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1. Introduction

The study of black holes in string theory has received a renewed attention after the Ooguri-

Strominger-Vafa conjecture [1] which proposes a connection between the entropy of four

dimensional BPS black holes and topological string amplitudes. A possible way to con-

struct such a black hole is through a Calabi-Yau compactification of Type IIA superstring

theory which yields N = 2 supergravity in four dimensions. Four dimensional black hole
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microstates are interpreted as bound states of D-branes wrapping cycles of the internal

manifold and the microscopic entropy agrees at leading order with the Bekenstein-Hawking

entropy computed in the corresponding effective field theory [2]. Rather remarkably, this

relation holds beyond leading order when we include corrections to the Bekenstein-Hawking

area law that arise from higher derivative F-term interactions in the effective theory [3]–[5]

(see [6] for a review).

On the other hand, the physics of the F-term in the four dimensional effective field

theory is captured by a twisted sigma-model defined on the Calabi-Yau manifold. The genus

zero free energy computes the effective action for the vector multiplets (in the Type IIA

setting) up to two derivatives, while higher genus topological string amplitudes encode

information about higher derivative couplings between the curvature and the graviphoton

field strength [7, 8] (see [9]–[12] for reviews).

From this relation it have been argued [1] that the partition function of the black hole

at the attractor point [13, 14] is equal to the modulus squared of the topological string

vacuum amplitude, ZBH = |Ztop|2. This conjecture has been addressed and refined in [15]–

[26]. A concrete realization of this proposal has been advanced in [27] and subsequently

in [28] for local threefolds Xp which are fibred over a compact curve Σg of genus g. In

this case a black hole can be engineered as bound states of N D4-branes wrapping a

non-compact four-cycle, and an arbitrary number of D-branes wrapping Σg along with D0-

branes. This configuration realizes a four dimensional BPS black hole whose microstates

are described by a mixed ensemble of fixed magnetic D4-brane charge N and electric

chemical potentials. Bound states of D-branes are counted by the corresponding gauge

field configurations excited on the worldvolume of the D4-brane. These in turn localize to

a deformed version of U(N) Yang-Mills theory on the Riemann surface Σg, the q-deformed

Yang-Mills theory introduced in [29, 28]. In the large N limit, this theory factorizes into a

chiral and antichiral part, like its undeformed cousin QCD2 [30]–[32], corresponding to the

holomorphic and antiholomorphic structure of |Ztop|2. The topological string amplitude

Ztop on these geometries has been computed recently in [33].

In the following we will focus on the case where the local threefold Xp is fibered over

a two-sphere. This paper is a companion of [34] where the gauge theoretical aspects of

the correspondence were analysed. Here we will study in detail the emergence of the

topological string theory from the strong coupling phase of the chiral two-dimensional q-

deformed gauge theory at large N . A crucial outcome of our investigation is a path towards

a topological sigma-model description underlying the Gross-Taylor string expansion [30]–

[32] of ordinary Yang-Mills theory. While at zero coupling (where QCD2 is a topological

field theory) such a reformulation exists [35], at finite area the full description in terms

of topological string theory is problematic. We present a potential way to overcome these

difficulties which relies on viewing QCD2 as a particular limit of the q-deformed gauge the-

ory. As we will show, the latter model admits a well-defined interpretation as a topological

string theory from which one can in principle extract the precise string theory underlying

QCD2. Moreover, as the topological strings live in higher target space dimensions this ap-

proach has the potential of extending the two-dimensional Gross-Taylor string description

to QCD4.

– 2 –



J
H
E
P
0
1
(
2
0
0
6
)
0
3
6

Many of the features of two-dimensional Yang-Mills theory on a sphere, such as its non-

trivial instanton driven phase transition in the large N limit [36, 37], are preserved by the q-

deformation and were thoroughly addressed in [34, 38, 39]. In this paper we will focus on the

chiral-antichiral decomposition of q-deformed Yang-Mills theory, which according to [27, 28]

is the chiral (antichiral) sector that should be related to the holomorphic (antiholomorphic)

topological string amplitudes. Similarly to what has been observed in [40, 41] for the

undeformed theory, we will show that the chiral sector has a non-trivial phase structure

that plays a key role in the comparison to string theory.

On the other hand, the threefold Xp is one of the simplest and best studied examples

of a toric variety. The topological vertex [42] is a useful tool for computing topological

string amplitudes in these geometries. A toric threefold is characterized by a graph where

trivalent vertices are glued together and the edges signal the degeneration of a T2 fibra-

tion. Topological string amplitudes can be reduced (roughly by an appropriate placing

of brane-antibrane pairs) to those on patches of trivial topology. The topological vertex

is the building block of this construction. We will use this formalism to make explicit

contact with the chiral q-deformed gauge theory at large N . In this setup we can make

a remarkable check of the proposal by exhibiting a relation between the Hurwitz numbers

that compute the combinatorics of branched covering maps to P1 and the relevant Gromov-

Witten invariants that “count” in the appropriate way the holomorphic curves embedded

in the Calabi-Yau manifold. Moreover, the string theory exhibits its origin as a gauge

theory through the finiteness of the radius of convergence of its perturbative expansion.

This paper is organized as follows. Section 2 is devoted to exploring the relationship

between the large N chiral q-deformed gauge theory partition function and the closed

topological string amplitude on the local threefold Xp. We rewrite the free energy of the

chiral theory in the large N limit in terms of (generalized) Gromov-Witten invariants and

show that its undeformed limit agrees perfectly with the conventional chiral QCD2 result.

We rewrite the chiral partition function in terms of the topological vertex as a topological

string amplitude and analyse the Gromov-Witten invariants of the corresponding toric

scheme X̂p. As expected, the related Gopakumar-Vafa invariants of X̂p are integral for all

p. We also use the undeformed limit to derive an asymptotic localization formula for the

Gromov-Witten invariants in terms of Hodge integrals.

Section 3 is devoted to the analysis of the large N phase structure of the chiral gauge

theory by means of a matrix model, and the recovery of the topological string theory in the

strong coupling phase. Our saddle-point equations consistently reduce to the Crescimanno-

Taylor equations [41] in the undeformed limit and we find a qualitatively similar phase

diagram to that of chiral QCD2. In particular, two phase transitions occur and we show

that the one-cut solution in the strong coupling phase agrees with the expectations from

topological string theory.

Finally, in section 4 we examine the analytic properties of the perturbative expansion

of the string partition function. We find a finite radius of convergence that corresponds

to the critical points of the phase transition. We compare the value of the critical point

obtained in this way with both the numerical results of the matrix model analysis and with

the exact result for the full coupled gauge theory found in [34]. We also speculate that the
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finite radius of convergence of the topological string amplitude may have an interpretation

as a sort of Hagedorn transition. Section 5 contains some concluding remarks and we

collect various technical details in four appendices at the end of the paper.

2. q-deformed Yang-Mills theory on S2 and closed topological strings

The conjectured relation in [1] links four-dimensional black holes with topological strings.

Consider Type IIA string theory on the local Calabi-Yau threefold

Xp = O(−p) ⊕O(p − 2) −→ P1 , (2.1)

where p ∈ Z and O(m) is the canonical holomorphic line bundle over P1 of degree m.

The conjecture predicts that the black hole partition function ZBH is related for large

charges to the perturbative vacuum amplitude Ztop for topological strings on Xp by ZBH =

|Ztop|2. Because an exact microscopic computation [28] shows that ZBH coincides with the

partition function Zq
YM of q-deformed U(N) Yang-Mills theory on the base S2 ∼= P1 of the

fibration (2.1), a natural check of the conjecture is to verify that Zq
YM = Ztop Ztop in the

large N limit. In this section we shall analyse this last relation by considering in detail the

large N chiral expansion of the q-deformed gauge theory. We will find the deformed analog

of chiral QCD2 and exhibit its precise relation with the closed topological string amplitude

on the Calabi-Yau threefold Xp. Unless explicitly stated otherwise, we will assume that

p > 2 as this is when the large N phase transition occurs.

2.1 Large N expansion

The partition function of q-deformed Yang-Mills theory on the sphere S2 is given by

Zq
YM =

∑

R

dimq(R)2 q
p
2

C2(R) , (2.2)

where the sum runs over all irreducible representations of the U(N) gauge group, q = e−gs ,

C2(R) is the quadratic Casimir invariant of R, and the quantum dimension is defined as

dimq(R) =
∏

1≤i<j≤N

[

Ri − Rj + j − i
]

q
[

j − i
]

q

=
∏

1≤i<j≤N

q(Ri−Rj+j−i)/2 − q−(Ri−Rj+j−i)/2

q(j−i)/2 − q−(j−i)/2
(2.3)

with Ri labeling the number of boxes in the i-th row of the Young tableau corresponding

to R. In [28] a different but related definition is used whereby the quantum dimension is

replaced by the quantity S00 dimq(R) with

S00(q,N) =
∏

1≤i<j≤N

[j − i]q . (2.4)

At finite N the presence of S00 is simply a change in the overall normalization. In the

large N limit it will produce the contribution of constant maps to the topological string

amplitude [44, 49], a universal factor that can be computed separately (see appendix A).

We will include this contribution later on when we compare our results with topological

string theory.
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In [28] the asymptotic expansion in 1
N of the U(N) partition function (2.2) was con-

structed following closely the strategy proposed in [30]–[31] for ordinary two-dimensional

Yang-Mills theory. The sum was restricted to a subset of representations called “compos-

ite” large N representations. These are essentially the representations whose quadratic

Casimir invariant has a leading term of order N . Composite representations are formed by

taking the tensor product of a representation R corresponding to a Young diagram with

a finite number of boxes and a representation S̄ which is the complex conjugate of a rep-

resentation S associated to another diagram with a finite number of boxes. The resulting

large N expansion essentially factorizes into two copies of a simpler chiral topological string

expansion, but with a couple of important subtleties. Firstly, one should include in the

definition of Ztop a sum over a U(1) degree of freedom identified with a Ramond-Ramond

flux through the sphere. Secondly, and more importantly, the relevant topological string

partition function implies the presence of two stacks of D-branes inserted in the fibers of

Xp, represented by two extra sums over representations with finite numbers of boxes.

The explicit result obtained in [28] reads

Zq
YM =

∞
∑

l=−∞

∑

R̂(1),R̂(2)

ZqYM,+

R̂(1),R̂(2)
(t + p gsl; p)ZqYM,−

R̂(1),R̂(2)
( t̄ − p gsl; p) (2.5)

where the second sum runs through irreducible representations R̂(1), R̂(2) of SU(N) with

ZqYM,−

R̂(1),R̂(2)
( t̄; p) = (−1)|R̂(1)|+|R̂(2)|ZqYM,+

R̂>
(1)

,R̂>
(2)

( t̄; p) . (2.6)

The Kähler modulus t parameterizes the area of the sphere P1 and is given by

t = (p − 2)
N gs

2
+ i θ (2.7)

in terms of the original parameters of the gauge theory (in this paper we set θ = 0). The

symbol |R̂| is the total number of boxes of the Young tableau of the SU(N) representation

R̂. The chiral block ZqYM,+

R̂(1),R̂(2)
(t; p) agrees exactly with the perturbative topological string

amplitude on Xp [33] with two stacks of D-branes inserted in the fiber. It depends explicitly

on the choice of two arbitrary Young tableaux which correspond to the boundary degrees

of freedom of the fiber D-branes. When all the Young tableaux are taken to be trivial, i.e.

R̂(1) = R̂(2) = 0, one recovers the expected closed topological string partition function. The

chiral and anti-chiral parts are sewn together along the D-branes and summed over them.

The full non-chiral partition function also admits a standard description in terms of

toric geometry. As we show explicitly in section 2.3, the fibration (2.1) is a toric mani-

fold and the chiral block ZqYM,+

R̂(1),R̂(2)
(t; p) can be written in terms of the topological vertex

CR̂(1)R̂(2)R̂(3)
(q) [42] as

ZqYM,+

R̂(1),R̂(2)
(t; p) = Z0(q) q

κ
R̂(1)

/2
e
−

t(|R̂(1)|+|R̂(2)|)

p−2

×
∑

R̂

e−t|R̂| q
(p−1)κ

R̂(1)
/2

C0R̂(1)R̂>(q)C0R̂R̂(2)
(q) , (2.8)
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where κR̂ is related to the Young tableau labels through

κR̂ =

N−1
∑

i=1

R̂i

(

R̂i − 2i + 1
)

(2.9)

and Z0(q) represents the contribution from constant string maps (see appendix A). This

is the partition function of the topological A-model on Xp with non-compact lagrangian

D-branes inserted at two of the four lines in the web diagram. The D-branes are placed at a

well-defined “distance” t/(p− 2) from the sphere, thereby introducing another geometrical

parameter.

The extra sum over the integer l originates from the U(1) degrees of freedom contained

in the original gauge group U(N) and can be interpreted as a sum over Ramond-Ramond

fluxes through the sphere [27]. The sum over the fiber D-branes is instead related to the

fact that the Calabi-Yau manifold Xp is non-compact and has more moduli coming from

the non-compact directions [43]. Note that the sum over the “external” branes in the

full partition function enters on the same footing as the sum over the topological string

amplitude constituents. This “external” sum is weighted with a different Kähler parameter

t̂ =
t

p − 2
=

N gs

2
, (2.10)

and the partition function therefore effectively depends on two parameters. The observation

above suggests that t̂ could have an interpretation as a true Kähler modulus. As we will

demonstrate in the following, this follows from a different definition of the chiral gauge

theory which is directly connected to the ordinary Yang-Mills one and which leads to a

closed topological string theory by itself. The chiral expansion we propose arises from

restricting the original sum to only those representations whose Young diagrams contain a

finite number n of boxes. Coupled representations will not be considered in this paper.

2.2 Chiral expansion

We now describe the chiral expansion explicitly. The second Casimir invariant for U(N)

representations R has the form

C2(R) = κR̂ + N n − n2

N
+

m2

N
, (2.11)

where m is the U(1) charge

m = n + N r (2.12)

with r ∈ Z. The row labels of the U(N) representations R are related to those of SU(N)

representations R̂ by Ri = R̂i + r for i = 1, . . . , N − 1 and RN = r. The partition function

is a sum over the total number of boxes n, the SU(N) Young tableaux R̂ with n boxes and

the U(1) degree of freedom r, giving

ZqYM
chiral =

∞
∑

r=−∞

e−N gsp
2

r2
∞
∑

n=1

∑

R̂

dimq

(

R̂
)2

exp

[

−N gsp

2

(

n +
κR̂

N

)

− gsp n r

]

. (2.13)
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Let us focus on the r = 0 sector of vanishing Ramond-Ramond flux through S2, whose

partition function reads

ZqYM,0
chiral =

∞
∑

n=1

∑

R̂

dimq

(

R̂
)2

exp

[

−N gsp

2

(

n +
κR̂

N

)

]

. (2.14)

To proceed further, we need to understand the structure of the quantum dimension

dimq(R̂). It can be conveniently expressed as [28]

dimq

(

R̂
)

= e
gsN

2
n WR̂

(

q−1
)

c
R̂

∏

i=1

R̂i
∏

j=1

(

1 − qj−i e−gsN
)

, (2.15)

where cR̂ is the number of rows in R̂ and WR̂(q) = WR̂0(q) is related to the large N limit of

the modular S-matrix of the SU(N) WZW model and SU(N) Chern-Simons gauge theory

by

WR̂Q̂(q) = lim
N→∞

q
N(|R̂|+|Q̂|)

2

SR̂Q̂(q,N)

S00(q,N)
. (2.16)

A convenient way to parameterize the different Young diagrams R̂ with box number n is

as follows. Given a partition

n = n1 + n2 + · · · + nimax (2.17)

of n with n1 ≥ n2 ≥ · · · ≥ nimax , one obtains the list d(n) = (n1, n2, . . . , nimax). With

ni = R̂i the number of boxes in the i-th row of R̂, we have

dimq

(

R̂
)

= e− gsN
2

n WR̂

(

q−1
)

imax
∏

i=1

ni
∏

j=1

(

1 − qj−i e−gsN
)

. (2.18)

By using the relation

WR̂

(

q−1
)

= (−1)n q−κ
R̂

/2 WR̂

(

q
)

(2.19)

we can rewrite the chiral partition function as

ZqYM,0
chiral =

∞
∑

n=1

∑

R̂

e−N gs(p−2)
2

n e− gs(p−2)
2

κ
R̂ WR̂(q)2

imax
∏

i=1

ni
∏

j=1

(

1 − qj−i e−gsN
)2

. (2.20)

The explicit expression [46]

WR̂(q) = qκ
R̂

/4
∏

1≤i<j≤imax

[ni − nj + j − i]q
[j − i]q

imax
∏

i=1

ni
∏

k=1

1

[k − i + imax]q
(2.21)

shows that the general structure of WR̂(q) is of the form qα/
∏

β,γ (1 − qβ)γ for some

α, β, γ > 0, and the leading behaviour as gs → 0 is simply determined by the total number

of boxes n as WR̂(q) ' g−n
s .
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We are ready now to make the connection with the topological string expansion. In

terms of the Kähler modulus (2.7), the chiral partition function is simply rewritten as

ZqYM,0
chiral =

∞
∑

n=1

e−t n
∑

R̂

e−
gs(p−2)

2
κ

R̂ WR̂(q)2
imax
∏

i=1

ni
∏

j=1

(

1 − qj−i e− 2 t
p−2

)2
. (2.22)

The string expansion is obtained by expanding the partition function in powers of the

string coupling constant gs with t fixed. Notice that this is not a power series in e−t at

any given order in gs, as one would expect in a conventional topological string perturbative

expansion with a single Kähler modulus. There is also a power series in e
− 2 t

p−2 which in

the coupled partition function appears as fiber D-brane contributions whose distance from

the S2 is parameterized by the Kähler modulus (2.10). We will come back to this point

later on. The general structure of the free energy FqYM
chiral = logZqYM,0

chiral is given by

FqYM
chiral =

∞
∑

g=0

g2g−2
s Fg (2.23)

with

Fg

(

t , t̂ ; p
)

=

∞
∑

n=1

e−n t
2n
∑

k=0

e−2 k t̂ Ng
n,k(p) , (2.24)

where n labels the winding numbers of holomorphic maps from genus g Riemann surfaces

into the local threefold Xp and Ng
n,k(p) ∈ Q are generalized Gromov-Witten invariants.

The conventional Gromov-Witten invariants Ng
n = Ng

n,k=0 of the local Calabi-Yau three-

fold Xp “count” the genus g worldsheet instantons of degree n in Xp and arise when the

fiber D-branes are ignored. The geometrical meaning of the generalized invariants Ng
n,k(p)

for k > 0 will be elucidated later on.

Let us specialize at this point to the genus zero contribution, as it is this term which

will exhibit the interesting phase structure of the theory. The higher genus contributions

are similarly dealt with (The genus one free energy is worked out in appendix B). By

parameterizing the free energy as

F0

(

t , t̂ ; p
)

=
(

1 − e−2 t̂
)2

∞
∑

n=1

e−n t Fn

(

t̂ ; p
)

, (2.25)

we find that the first six contributions are given by

F1 = 1 ,

F2 =
e−4 t̂

8

[

1 + 4 p + 2 p2 + e 2 t̂
(

2 − 4 p2
)

+ e 4 t̂
(

1 − 4 p + 2 p2
)

]

,

F3 =
e−8 t̂

54

[

2 + 18 p + 45 p2 + 36 p3 + 9 p4 + 6 e 4 t̂
(

1 − 9 p2 + 9 p4
)

+ e 8 t̂
(

2 − 18 p + 45 p2 − 36 p3 + 9 p4
)

+ 2 e 6 t̂
(

2 − 9 p − 9 p2 + 36 p3 − 18 p4
)

+ 2 e 2 t̂
(

2 + 9 p − 9 p2 − 36 p3 − 18 p4
)

]

,
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F4 =
e−12 t̂

192

[

3 + 44 p + 214 p2 + 448 p3 + 432 p4 + 192 p5 + 32 p6

+ e 10 t̂
(

6 − 56 p + 60 p2 + 416 p3 − 1008 p4 + 768 p5 − 192 p6
)

+ e 12 t̂
(

3 − 44 p + 214 p2 − 448 p3 + 432 p4 − 192 p5 + 32 p6
)

+ 2 e 2 t̂
(

3 + 28 p + 30 p2 − 208 p3 − 504 p4 − 384 p5 − 96 p6
)

+ 4 e 6 t̂
(

3 − 62 p2 + 216 p4 − 160 p6
)

+ e 8 t̂
(

9 − 44 p − 150 p2 + 512 p3 + 144 p4 − 960 p5 + 480 p6
)

+ e 4 t̂
(

9 + 44 p − 150 p2 − 512 p3 + 144 p4 + 960 p5 + 480 p6
)

]

,

F5 =
e−16 t̂

3000

[

24 + 500 p + 3750 p2 + 13500 p3 + 25875 p4 + 27500 p5 + 16250 p6 + 5000 p7

+ 625 p8 + e 14 t̂
(

48 − 700 p + 2250 p2 + 5000 p3 − 38750 p4 + 76700 p5 − 69500 p6

+ 30000 p7 − 5000 p8
)

+ e 16 t̂
(

24 − 500 p + 3750 p2 − 13500 p3 + 25875 p4

− 27500 p5 + 16250 p6 − 5000 p7 + 625 p8
)

− 2 e 2 t̂
(

− 24 − 350 p − 1125 p2

+ 2500 p3 + 19375 p4 + 38350 p5 + 34750 p6 + 15000 p7 + 2500 p8
)

− 10 e 8 t̂
(

12

− 450 p2 + 3325 p4 − 7250 p6 + 4375 p8
)

+ 4 e 12 t̂
(

18 − 175 p − 125 p2 + 3500 p3

− 5125 p4 − 7950 p5 + 23000 p6 − 17500 p7 + 4375 p8
)

+ 4 e 4 t̂
(

18 + 175 p

− 125 p2 − 3500 p3 − 5125 p4 + 7950 p5 + 23000 p6 + 17500 p7 + 4375 p8
)

+ 2 e 10 t̂
(

48 − 250 p − 1625 p2 + 5500 p3 + 8375 p4 − 28250 p5 − 1250 p6

+ 35000 p7 − 17500 p8
)

+ 2 e 6 t̂
(

48 + 250 p − 1625 p2 − 5500 p3

+ 8375 p4 + 28250 p5 − 1250 p6 − 35000 p7 − 17500 p8
)

]

,

F6 =
e−20 t̂

2160

[

10 + 274 p + 2837 p2 + 14940 p3 + 44955 p4 + 81756 p5 + 92250 p6 + 64800 p7

+ 27540 p8 + 6480 p9 + 648 p10 + e 18 t̂
(

20 − 404 p + 2230 p2 + 630 p3 − 44880 p4

+ 170154 p5 − 304530 p6 + 303120 p7 − 171720 p8 + 51840 p9 − 6480 p10
)

+ e 20 t̂
(

10 − 274 p + 2837 p2 − 14940 p3 + 44955 p4 − 81756 p5 + 92250 p6 − 64800 p7

+ 27540 p8 − 6480 p9 + 648 p10
)

+ 2 e 2 t̂
(

10 + 202 p + 1115 p2 − 315 p3

− 22440 p4 − 85077 p5 − 152265 p6 − 151560 p7 − 85860 p8 − 25920 p9 + 3240 p10
)

+ 3 e 16 t̂
(

10 − 148 p + 225 p2 + 3780 p3 − 15035 p4 + 3168 p5 + 72610 p6 − 152640 p7

+ 136620 p8 − 58320 p9 + 9720 p10
)

+ 3 e 4 t̂
(

10 + 148 p + 225 p2 − 3780 p3 − 15035 p4

− 3168 p5 + 72610 p6 + 152640 p7 + 136620 p8 + 58320 p9 + 9720 p10
)

+ 12 e 10 t̂
(

5 − 297 p2 + 3760 p4 − 16325 p6 + 26460 p8 − 13608 p10
)

+ 4 e 14 t̂
(

10 + 101 p − 285 p2 + 3555 p3 − 1860 p4 − 26109 p5 + 42780 p6

+ 24120 p7 − 100440 p8 − 77760 p9 − 19440 p10
)

+ 4 e 6 t̂
(

10 + 101 p − 285 p2

− 3555 p3 − 1860 p4 + 26109 p5 + 42780 p6 − 24120 p7 − 100440 p8 − 77760 p9
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− 19440 p10
)

+ 2 e 12 t̂
(

25 − 137 p − 1410 p2 + 4860 p3 + 14955 p4 − 45738 p5

− 39360 p6 + 146160 p7 − 11340 p8 − 136080 p9 + 68040 p10
)

+ 2 e 8 t̂
(

25

+ 137 p − 1410 p2 − 4860 p3 + 14955 p4 + 45738 p5 − 39360 p6

−146160 p7 − 11340 p8 + 136080 p9 + 68040 p10
)

]

. (2.26)

Note that N0
n,k(p) is a polynomial of degree 2n − 2 in p.

As a first application of these results, let us check the consistency of our computations

with ordinary large N Yang-Mills theory. It is possible to find a limit in which the unde-

formed theory is recovered [34, 38, 39], namely p → ∞ with A = 2 p t̂ = p N gs kept fixed.

The free energies (2.26) in this limit should reproduce the analogous quantities obtained

in ordinary chiral Yang-Mills theory from the Gross-Taylor string expansion. By explicitly

performing this limit we find

Φ0(A) := lim
p→∞

A=2 p t̂

F0

(

t , t̂ ; p
)

=
∞

∑

n=1

e−n A/2 φn(A) (2.27)

with

φ1 = 1 ,

φ2 =
1

2
− A +

1

4
A2 ,

φ3 =
1

3
− 2A + 3A2 − 4

3
A3 +

1

6
A4 ,

φ4 =
1

4
− 3A +

21

2
A2 − 43

3
A3 +

33

4
A4 − 2A5 +

1

6
A6 ,

φ5 =
1

5
− 4A + 25A2 − 202

3
A3 +

529

6
A4 − 883

15
A5 +

121

6
A6 − 10

3
A7 +

5

24
A8 ,

φ6 =
1

6
− 5A +

195

4
A2 − 647

3
A3 +

1489

3
A4 − 3178

5
A5 +

1871

4
A6 − 598

3
A7

+ 48A8 − 6A9 +
3

10
A10 . (2.28)

We find exact agreement at this order with the results obtained in [40, 41] for the ordinary

chiral QCD2 string.

The second application is somewhat more sophisticated and will be discussed in sec-

tions 2.6 and 4. From (2.26) it is possible to compute the generalized Gromov-Witten

invariants of the topological string theory on Xp. Because ordinary chiral QCD2 computes

Hurwitz numbers which are encoded in the coefficients of the area polynomials in (2.28) [40],

our limiting procedure establishes a direct link between the combinatorics of branched cov-

ering maps to P1 and the geometry of rational curves embedded in Calabi-Yau threefolds.

In section 4 we will use the information encoded in these free energies to estimate the radius

of convergence of the string perturbation series and to describe the phase transitions in the

chiral gauge theory.
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2.3 Toric geometry and the topological vertex

We will now derive the toric description of the local Calabi-Yau threefold (2.1), and by using

the formalism of the topological vertex [11, 42] we will find the toric geometry associated

to the large N limit of the chiral q-deformed Yang-Mills theory. The total space Xp may

be regarded as a special lagrangian T2 × R fibration over R3. With (zi)
4
i=1 coordinates on

the complex linear space C4, consider the real equation

µp := |z1|2 + |z4|2 − p|z2|2 + (p − 2)|z3|2 = t (2.29)

and the U(1) group action on C4 given by

(

z1 , z4 , z2 , z3

)

7−→
(

e iα z1 , e iα z4 , e− i p α z2 , e i (p−2)α z3

)

. (2.30)

Then Xp = µ−1
p (t)/U(1). For z2 = z3 = 0 eq. (2.29) describes a sphere whose area is

proportional to t. Thus (z1, z4) can be taken as homogeneous coordinates for the base P1

of the fibration (2.1), while (z2, z3) may be regarded as coordinates of the fibers.

This realization defines Xp as a symplectic quotient. For this, we regard Xp as a

union of local coordinate patches each symplectomorphic to C3 [42, 11]. There are two

patches because the base P1 is given by the equation |z1|2 + |z4|2 = t with one of z1 or

z4 non-zero. In each patch we write down moment maps (rα, rβ , rγ) whose image gives

global coordinates for the base R3 and which generate three hamiltonian flows on C3 with

respect to its standard symplectic structure. The torus fiber T2 corresponds to the circle

actions generated by rα and rβ , while rγ generates the real line R. The local C3 geometry

of Xp is represented by an oriented trivalent planar graph which encodes the degeneration

locus of the fibration in the base R3, drawn in the rγ = 0 plane. An edge of the graph

is labelled by an integer vector (n,m) ∈ Z2 that corresponds to the generator of the

homology group H1(T
2, Z) which is the shrinking cycle. Changing the edge orientations

sends (n,m) 7→ (−n,−m) and does not alter the Calabi-Yau geometry. The local geometry

is described by assigning to each patch three integer vectors ~va = (na,ma), a = 1, 2, 3 which

single out the degenerating cycles unambiguously up to SL(2, Z) modular transformations

of T2. The lines in the base R3 where the T2 fibers degenerate are correlated with the

zeroes of the corresponding moment maps. The Calabi-Yau condition is encoded in the

requirement
∑

a ~va = (0, 0). The conditions |~va ∧ ~vb| = 1, a < b ensure smoothness of Xp,

where ∧ denotes the symplectic product on the vector space H1(T
2, R).

Let us now explicitly display the two C3 patches of the Calabi-Yau space Xp.

z4 6= 0: In this case we can use (2.29) to solve for the modulus of z4 in terms of z1, z2, z3

and gauge away its phase by dividing by the U(1) action (2.30) of the symplectic quotient

construction. This defines the patch U4(z1, z2, z3) ∼= C3. The hamiltonians which generate

the homology cycles of the T2 fiber are defined by

rα = |z2|2 − |z1|2 ,

rβ = |z3|2 − |z1|2 (2.31)
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with the torus action

e iα rα+i β rβ :
(

z1 , z2 , z3

)

7−→
(

e− i (α+β) z1 , e iα z2 , e iβ z3

)

. (2.32)

The R fiber is generated by rγ = Im(z1z2z3z4). The degeneration locus corresponds to

zero sets of these moment maps. Using (2.29) one finds that the (1, 0) cycle generated

by rβ degenerates over the line z1 = z3 = 0 where rβ = rγ = 0 and rα ≥ 0, the (0, 1)

cycle generated by rα degenerates over z1 = z2 = 0 where rα = rγ = 0 and 0 ≤ rβ < t,

and the (−1,−1) cycle generated by −(rα + rβ) degenerates over z2 = z3 = 0 where

rα − rβ = rγ = 0 and −t < rα ≤ 0. Imposing the Calabi-Yau and smoothness conditions,

and defining ~v1 = (−1,−1), we arrive at the basis for the degeneration locus in H1(T
2, Z)

given by

~v1 = (−1,−1) , ~v2 = (0, 1) , ~v3 = (1, 0) . (2.33)

The graph representing this locus is depicted in figure 1.

(0,1)

(1,0)

(−1,−1)

Figure 1: Toric graph for the patch U4(z1, z2, z3) of Xp representing the singular locus in the base

R3 with global coordinates (rα, rβ , rγ).

z1 6= 0: In this case we can solve for z1 and produce the patch U1(z2, z3, z4) ∼= C3. The

same hamiltonians as before generate the T2 × R fiber, except that now z1 is no longer a

natural coordinate for the patch and so we use (2.29) to write

rα = |z2|2 − |z1|2 = −t + (1 − p)|z2|2 + (p − 2)|z3|2 + |z4|2 ,

rβ = |z3|2 − |z1|2 = −t − p|z2|2 + (p − 1)|z3|2 + |z4|2 (2.34)

with the torus action

e iα rα+ i β rβ :
(

z2 , z3 , z4

)

7−→
(

e i (1−p)α− i p β z2 , e i (p−2)α+ i (p−1)β z3 , e i (α+β) z4

)

.

(2.35)

Again by using (2.29) one finds that the (p−2, p−1) cycle generated by (p−2)rα +(p−1)rβ

degenerates over the line z2 = z4 = 0 where (p − 1)rα + (p − 2)rβ = (3 − 2p)t, rγ = 0 and

−t ≤ rα < 0, the (1 − p,−p) cycle degenerates for z3 = z4 = 0 where p rα + (p − 1)rβ =

(1 − 2p)t, rγ = 0 and rα ≤ t, and finally the (1, 1) cycle generated by rα + rβ degenerates
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over z2 = z3 = 0 where rα − rβ = rγ = 0 and −t ≤ rα < 0. Defining ~v ′
1 = (1, 1) thereby

gives the degeneration basis

~v ′
1 = (1, 1) , ~v ′

2 = (1 − p,−p) , ~v ′
3 = (p − 2, p − 1) (2.36)

depicted in figure 2.

(1,1)

(  −2,  −1)

(1−  ,−  )

p p

p p

Figure 2: Toric graph for the patch U1(z2, z3, z4) of Xp representing the singular locus in the base

R3 with global coordinates (rα, rβ , rγ).

Note that both patches share the common edge where z2 = z3 = 0 through the

orientation reversing symmetry (−1,−1) ↔ (1, 1) of their graphs. The length of this edge

is the Kähler parameter t and it represents the base P1 of the fibration (2.1). The threefold

Xp is finally obtained by gluing the two C3 patches together along this common edge. The

transition functions are given by SL(2, Z) modular transformations of the T2 fibers between

the patches. The graph encoding the toric geometry of Xp is depicted in figure 3.

t

pp

pp

(1−  ,−  )

(  −2,  −1)

(−1,−1)

(1,0)

(0,1)

Figure 3: Toric diagram of Xp = O(−p)⊕O(p−2) −→ P1. The manifold is built by gluing its two

C3 patches together along their common but oppositely oriented sphere P1 with Kähler modulus t.

We can now construct generic topological string amplitudes on Xp by using the for-

malism of the topological vertex [42] (see [11] for a review). The toric geometry of Xp is

encoded in a planar graph obtained by gluing trivalent vertices representing the C3 patches.

The basic object associated to the trivalent vertices is the open topological string vacuum

amplitude CR̂(1)R̂(2)R̂(3)
(q) on the trivial C3 geometry, where R̂(a), a = 1, 2, 3 are SU(N)

representation labels on the three edges ~va of the graph. This defines the cubic topological

vertex [42]. It is proportional to the combinatorial quantity
∑

Y q|Y|, where the sum runs

– 13 –



J
H
E
P
0
1
(
2
0
0
6
)
0
3
6

over plane partitions Y whose edges in the three directions correspond to Young tableaux

with the shapes R̂(a) [45]. Explicitly, the topological vertex amplitude in the canonical

framing (2.33) is given by

CR̂(1)R̂(2)R̂(3)
(q) = q

(κ
R̂(2)

+κ
R̂(3)

)/2 ∑

Q̂

∑

Q̂(1),Q̂(3)

N
R̂(1)

Q̂Q̂(1)
N

R̂>
(1)

Q̂Q̂(3)

×
WR̂>

(2)
Q̂(1)

(q)WR̂(2)Q̂(3)
(q)

WR̂(2)
(q)

(2.37)

where N Ŝ
Q̂R̂

are the SU(N) fusion numbers. It is natural to expect that closed string

amplitudes associated to the toric diagram in figure 3 can be computed by gluing the

open topological string amplitudes associated to the trivalent vertices, in much the same

way that one computes amplitudes in perturbative quantum field theory by gluing vertices

through propagators.

The gluing rules for the topological vertex are quite simple [42]. First of all, we need

to reverse the orientation of the edge ~v1, which in the open topological string amplitude

induces the transformation

CR̂(1)R̂(2)R̂(3)
(q) 7−→ (−1)|R̂(1)| CR̂>

(1)
R̂(2)R̂(3)

(q) (2.38)

corresponding to the gluing of topological branes to antibranes. Then we have to take care

of the fact that the patch U1 is not in the canonical framing given by the basis (2.33) [42, 11].

This implies the presence of an additional factor (−1)−n1|R̂(1)| q
n1κ

R̂(1)
/2

in the amplitude,

where n1 = |~v ′
3 ∧ ~v3| = p − 1. We glue together the two vertices with the Schwinger

propagator e−|R̂(1)|t δR̂′
(1)

,R̂>
(1)

coming from the worldsheet instanton action on the lines

which represent spheres P1. Collecting all factors, we arrive at the topological string

partition function given by

Z R̂(2),R̂(3)

R̂′
(2)

,R̂′
(3)

(t; p) =
∑

R̂(1)

e−|R̂(1)|t (−1)p|R̂(1)| q
(p−1)κ

R̂(1)
/2

CR̂(1)R̂(2)R̂(3)
(q)CR̂>

(1)
R̂′

(2)
R̂′

(3)
(q) .

(2.39)

This is a generalization of the closed topological string vacuum amplitude on Xp, with

representations R̂(2), R̂
′
(2), R̂(3), R̂

′
(3) placed on the external legs of the toric diagram. These

representations describe D-brane degrees of freedom [42] corresponding to non-compact

special lagrangian submanifolds with the topology of C×S1 in the edges that go to infinity

in the toric diagram for Xp.

Let us now analytically continue t = iπ p + t′. As explained in [28, 43] there are

only two stacks of D-branes inserted in the fibers of Xp that correspond to extra closed

string moduli coming from infinity. In the other two directions, where the D4-branes are

wrapped, we have to consider trivial representations (heuristically this line bundle should

be understood as a degenerate limit of a compact cycle). These are the cycles ~v3 and ~v ′
2

and the condition requires setting R̂3 = R̂′
2 = 0. By using the identity

WR̂Ŝ>(q) = q−κ
Ŝ
/2 C0R̂Ŝ(q) (2.40)
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along with the cyclicity of the topological vertex in its representation labels, we arrive at

Z R̂(2), 0

0 ,R̂′
(3)

(t′; p) = q
κ

R̂(2)
/2 ∑

R̂(1)

e−|R̂(1)|t
′
q
(p−2)κ

R̂(1)
/2

WR̂′
(3)

R̂(1)
(q)WR̂(1)R̂

>
(2)

(q) . (2.41)

Up to overall normalization this expression coincides with the chiral partition function

ZqYM,+

R̂′
(3)

,R̂(2)
(t′ ) computed in [28] (see eq. (2.8)). In particular, the closed topological string

partition function on Xp is given by

Z 0,0
0,0

(t′; p) =
∑

R̂(1)

e−|R̂(1)|t
′
q
(p−2)κ

R̂(1)
/2

WR̂(1)
(q)2 . (2.42)

This expression coincides exactly with the perturbative part of the topological string am-

plitude on Xp at the value of the Kähler parameter fixed by the attractor mechanism [28].

It is straightforward to check that the k = 0 sector of eq. (2.22) also reproduces the topo-

logical string partition function on Xp. The relevant Gromov-Witten invariants are given

in this case by Ng
n(p) = Ng

n,0(p). We will now explore this relationship in more detail.

2.4 Chiral partition function as a topological string amplitude

In section 2.2 we found that the chiral partition function, obtained by disregarding coupled

representations, has a free energy which is nicely organized as a double series expansion

in the parameters t and t̂ according to eq. (2.24). This strongly suggests that t̂ should be

regarded as another Kähler parameter. We will now show that this is indeed the case and

also make contact with the amplitude (2.42) which can be interpreted as the topological

string partition function on Xp. For this, let us begin with the simple identity

imax
∏

i=1

ni
∏

j=1

(

1 − qj−i e−gsN
)

= exp

[

∞
∑

n=1

1

n
fR̂(qn) e−n gsN

]

(2.43)

where

fR̂(q) =

imax
∑

i=1

ni
∑

j=1

qj−i . (2.44)

This can in turn be written in terms of the function

NR̂

(

q , e−gsN
)

:=
∑

Ŝ

(−1)|Ŝ| e−|Ŝ|gsN WŜR̂(q)WŜ>(q) (2.45)

by means of the identity [28]

NR̂

(

q , e−gsN
)

= N0(q,N)WR̂(q) exp

[

∞
∑

n=1

1

n
fR̂(qn) e−n gsN

]

. (2.46)

Along with (2.40) these identities enable us to rewrite our chiral partition function

(2.20) as

ZqYM,0
chiral = Z0(q)

∑

R̂

∑

R̂(1),R̂(2)

e−t|R̂|−t1|R̂(1)|−t2|R̂(2)| (−1)|R̂(1)|+|R̂(2)|+p|R̂| q(p−1)κ
R̂

/2
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×C0R̂(1)R̂>(q)C0R̂R̂(2)
(q)C00R̂>

(1)
(q)C00R̂>

(2)
(q) , (2.47)

where t1 = t2 = 2 t̂. In this computation we have restored the normalization factor S00

and defined (see appendix A)

Z0(q) = lim
N→∞

S00(q,N)

N0(q,N)
= M(q) η(q)N q−N/24 , (2.48)

where M(q) is the McMahon function and η(q) is the Dedekind function. The factor (2.48)

accounts for the contribution of constant string maps into Xp (having winding number

n = 0) and for quadratic (in t) ambiguities in the genus zero partition function [28], plus

some non-perturbative corrections. The remaining part of (2.47) represents instead the full

perturbative contribution to a closed topological string amplitude.

The relevant toric diagram can be read off directly from eq. (2.47) by reversing the

topological vertex gluing rules. It contains four vertices connected by three framed edges

with Kähler parameters t1, t and t2 (figure 4). Recall from section 2.3 that the ~v2 and ~v ′
3

p

p p

t

(−1,0)

(−1,1)

(1,1)

(   −1,   )p p

t
2

t
1

p

(0,1)

(1,0)

(−1,−1)

(  −2,  −1)

(1−  ,−  )

Figure 4: Toric diagram describing the topological string expansion of the chiral q-deformed gauge

theory partition function ZqYM,0
chiral

.

edges of this toric graph represent one-cycles in the fibers of the toric geometry of Xp and

have length t. Gluing the open topological string vertex to these edges thus corresponds

to the insertion of D-branes in the fiber of (2.1). In this local C3 patch these are special

lagrangian submanifolds with the topology of C×S1 corresponding to D-branes wrapping

an S1 cycle in the fiber. The gluing edges labelled by ta, a = 1, 2 thus correspond to

rational holomorphic curves Σa
∼= P1 at distances ta from the sphere P1 corresponding to

the gluing edge labelled t which represents the base of the fibration (2.1). The ta themselves

are the Kähler parameters of the corresponding curves Σa.

This defines a nonsingular toric Calabi-Yau scheme X̂p. It can be naturally thought

of as emerging from a large N geometric transition from the toric threefold described by a
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nonplanar trivalent graph with four vertices [46]–[48]. This geometry locally contains two

three-sphere cotangent bundles T ∗S3 each constructed as a T2 fibration over an interval

and glued together along a P1, and it corresponds to a surgery construction on S3 wherein

one performs a Heegaard split of S3 along solid tori and glues the tori together along their

boundary T2 through the SL(2, Z) transformation that relates one of the collapsing cycles of

the toric geometry to the other. Since this geometry is not globally the cotangent bundle of

a three-manifold, the topological string dynamics is described by two U(N) Chern-Simons

theories on S3, along with an additional sector of open strings stretched between the two

three-spheres which correspond to non-degenerate holomorphic instantons. The geometric

transition consists of shrinking the two three-spheres to points, and then resolving these

singularities with two copies of P1 to realize the toric manifold X̂p depicted in figure 4.

This description exhibits the two stacks of D-branes present in the geometry explicitly

(seen here as wrapping the lagrangian submanifolds S3 ⊂ T ∗S3 before the transition), and

it may also account for the generic discrepancy between the Chern-Simons and q-deformed

Yang-Mills descriptions of topological strings on Xp [34].

It is instructive to compare this result with the black hole partition function in the

sector of vanishing Ramond-Ramond flux. From the large N expansion of the q-deformed

partition function for the full coupled theory one finds from (2.5), (2.6) and (2.8) the

result [28]

Z0
BH =

∣

∣Z0(q)
∣

∣

2
∑

R̂±

e−t|R̂+|−t̄ |R̂−| (−1)p|R̂+|+p|R̂−| q
(p−1)(κ

R̂+
+κ

R̂−
)/2

×
∑

R̂(1),R̂(2)

e−2Re(t1)|R̂(1)| e−Re(t2)|R̂(2)| (−1)|R̂(1)|+|R̂(2)|

×C0R̂(1)R̂
>
+
(q)C0R̂+R̂(2)

(q)C0R̂−R̂>
(1)

(q)C0R̂>
−R̂>

(2)
(q) . (2.49)

We see that the chiral partition function (2.47) corresponds to the contribution to (2.49)

from the trivial sector R̂− = 0. This is natural in the toric description, as it corresponds to

dropping a gluing edge in the construction of the corresponding threefold. Note that our

Kähler modulus t is real as we have not included a θ-angle in the definition of the original

q-deformed gauge theory.

2.5 Gromov-Witten invariants

We will now analyse the Gromov-Witten invariants of the threefold X̂p. Modulo torsion

this space has, by construction, second homology group H2(X̂p, Z) ∼= Z3 with generating

two-cycles carrying the Kähler parameters t := (t1, t, t2). Holomorphic string maps, which

generate the chiral theory, preserve orientations of curves and are classified by effective

degrees taking values in H2(X̂p, Z)+ ∼= N3
0. The structure of eq. (2.47) suggests that the

chiral expansion of the free energy FqYM
chiral should be understood as a particular contribution

to the more general free energy

FX̂p
=

∞
∑

g=0

g2g−2
s F̂g (2.50)
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for topological A-model strings on X̂p. The free energy at genus g is given by a sum over

effective two-homology classes of genus g worldsheet instantons as

F̂g(t; p) =
∑

n∈H2(X̂p,Z)+

e−n·t N̂g
n
(p) , (2.51)

where N̂g
n
(p) ∈ Q are the Gromov-Witten invariants of X̂p. The chiral amplitude is

obtained by taking t1 = t2 = 2 t̂ and restricting the sums (2.51) to the sector where the

effective degree n := (k1, n, k2) is constrained by k1 + k2 = k with 0 ≤ k ≤ 2n. The

expansion of the free energy (2.51) in the three independent Kähler parameters can be

used to easily derive N̂g
n
(p) and the generalized Gromov-Witten invariants Ng

n,k(p) of Xp

appearing in the large N limit of chiral q-deformed Yang-Mills theory through

k
∑

k1=0

N̂g
(k1,n,k−k1)

(p) = Ng
n,k(p) . (2.52)

In particular, N̂g
(0,n,0)(p) = Ng

n(p) are the Gromov-Witten invariants of the original three-

fold Xp. We will exhibit the first few invariants only for the genus g = 0 case. Higher

genera are similarly dealt with.

The n = 1 terms in eq. (2.24) are of the form
∑2

k=0 e−t−2 k t̂ Ng
1,k. The required

two-homology classes in (2.51) are given by

n = (0, 1, 0) , (1, 1, 0) , (0, 1, 1) , (1, 1, 1) , (2.53)

and the corresponding Gromov-Witten invariants are

N̂0
(0,1,0) = −N̂0

(1,1,0) = −N̂0
(0,1,1) = N̂0

(1,1,1) = (−1)p . (2.54)

For n = 2, by expanding the sum explicitly it is again easy to write down the contributing

degrees n ∈ H2(X̂p, Z)+ and thus find the Gromov-Witten invariants

N̂0
(0,2,0) =

1

8

(

1 − 4 p + 2 p2
)

,

N̂0
(1,2,0) = N̂0

(0,2,1) =
1

2

(

p − p2
)

,

N̂0
(0,2,2) = N̂0

(2,2,0) = −1

8

(

1 − 2 p2
)

,

N̂0
(1,2,1) = p2 ,

N̂0
(2,2,1) = N̂0

(1,2,2) = −1

2

(

p + p2
)

,

N̂0
(2,2,2) =

1

8

(

1 + 4 p + 2 p2
)

. (2.55)

Finally, by following the same route for n = 3 we find the invariants

N̂0
(0,3,0) = (−1)p

(

1

27
− 1

3
p +

5

6
p2 − 2

3
p3 +

1

6
p4

)

,
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N̂0
(1,3,0) = N̂0

(0,3,1) = (−1)p
(

1

6
p − p2 +

4

3
p3 − 1

2
p4

)

,

N̂0
(2,3,0) = N̂0

(0,3,2) = (−1)p
(

1

6
p − 2

3
p3 +

1

2
p4

)

,

N̂0
(1,3,1) = (−1)p

(

1

2
p2 − 2 p3 +

3

2
p4

)

,

N̂0
(3,3,0) = N̂0

(0,3,3) = −(−1)p
(

1

27
− 1

6
p2 +

1

6
p4

)

,

N̂0
(1,3,2) = (−1)p

(

1

2
p2 − 3

2
p4

)

,

N̂0
(3,3,1) = N̂0

(1,3,3) = −(−1)p
(

1

6
p − 2

3
p3 − 1

2
p4

)

,

N̂0
(2,3,2) = (−1)p

(

1

2
p2 + 2 p3 +

3

2
p4

)

,

N̂0
(3,3,2) = N̂0

(2,3,3) = −(−1)p
(

1

6
p + p2 +

4

3
p3 +

1

2
p4

)

,

N̂0
(3,3,3) = (−1)p

(

1

27
+

1

3
p +

5

6
p2 +

2

3
p3 +

1

6
p4

)

. (2.56)

Let us now explore the hidden integrality structure of the Gromov-Witten invariants

through the embedding of the topological A-model string theory into Type IIA string

theory on X̂p [49, 50]. The generating function (2.50) for the all-genus topological string

amplitudes can be written as a generalized index that counts BPS states of D2-branes

wrapping holomorphic curves in X̂p as

FX̂p
=

∞
∑

g=0

∑

n∈H2(X̂p,Z)+

n̂g
n
(p)

∞
∑

d=1

1

d

(

2 sin
(d gs

2

)

)2g−2

e−d n·t , (2.57)

where n̂g
n
(p) ∈ Z are the Gopakumar-Vafa integer invariants which compute the Euler

characteristic of the moduli space of embedded curves of genus g and two-homology class n

in X̂p. As a consistency test of our interpretation of the chiral gauge theory as a topological

string theory, we will now extract the invariants n̂0
n
(p) directly from the expansion of

the genus zero free energy and verify that they are indeed integers. The case of higher

genera can be similarly handled by using the explicit inversion formula between the two

expansions (2.50), (2.51) and (2.57) that expresses the Gopakumar-Vafa invariants n̂g
n

in

terms of Gromov-Witten invariants N̂h
m

.

At genus zero we find by comparing (2.50), (2.51) and (2.57) the relation

N̂0
n
(p) =

∑

d |n

1

d3
n̂0

n/d(p) . (2.58)

We can invert this expression for a given effective class n ∈ H2(X̂p, Z)+ to get the invariants

n̂0
n
. The first few identifications are simple. For example, the degree n = (1, 1, 0) has no

divisors other than d = 1, and thus n̂0
(1,1,0)(p) = N̂0

(1,1,0)(p) = −(−1)p. Instead, for the
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degree n = (2, 2, 0) we have

N̂0
(2,2,0)(p) = n̂0

(2,2,0)(p) +
1

23
n̂0

(1,1,0)(p) (2.59)

leading to

n̂0
(2,2,0)(p) = −1

8

(

1 − 2 p2
)

+
1

23
(−1)p

which is indeed an integer. Proceeding iteratively along these same lines, it is straightfor-

ward to derive the first few sets of Gopakumar-Vafa invariants. Omitting those that are

obtained by the obvious symmetries, we obtain the list

n̂0
(0,1,0) = (−1)p = −n̂0

(1,1,0) = n̂0
(1,1,1) , (2.60)

n̂0
(0,2,0) =

1

8

(

1 − (−1)p − 4 p + 2 p2
)

,

n̂0
(0,2,1) =

1

2

(

p − p2
)

,

n̂0
(2,2,0) = −1

8

(

1 − (−1)p − 2 p2
)

,

n̂0
(1,2,1) = p2 ,

n̂0
(2,2,2) =

1

8

(

1 − (−1)p + 4 p + 2 p2
)

,

n̂0
(2,2,1) = −1

2

(

p + p2
)

, (2.61)

n̂0
(0,3,0) = −(−1)p

(

1

3
p − 5

6
p2 +

2

3
p3 − 1

6
p4

)

,

n̂0
(1,3,0) = (−1)p

(

1

6
p − p2 +

4

3
p3 − 1

2
p4

)

,

n̂0
(1,3,1) = (−1)p

(

1

2
p2 − 2 p3 +

3

2
p4

)

,

n̂0
(2,3,0) = (−1)p

(

1

6
p − 2

3
p3 +

1

2
p4

)

,

n̂0
(1,3,2) = (−1)p

(

1

2
p2 − 3

2
p4

)

,

n̂0
(3,3,0) = (−1)p

(

1

6
p2 − 1

6
p4

)

,

n̂0
(2,3,2) = (−1)p

(

1

2
p2 + 2 p3 +

3

2
p4

)

,

n̂0
(3,3,1) = −(−1)p

(

1

6
p − 2

3
p3 − 1

2
p4

)

,

n̂0
(3,3,2) = −(−1)p

(

1

6
p + p2 +

4

3
p3 − 1

2
p4

)

,

n̂0
(3,3,3) = (−1)p

(

1

3
p +

5

6
p2 +

2

3
p3 +

1

6
p4

)

. (2.62)

– 20 –



J
H
E
P
0
1
(
2
0
0
6
)
0
3
6

Despite their appearance, one can easily check the integrality of the expressions (2.60)–

(2.62) for any integer p. The quantity n̂0
(0,n,0)(p) = n0

n(p) computes the genus zero

Gopakumar-Vafa invariants for closed topological strings on Xp. In particular, for p = 1

the threefold X1 = K
1/2
P1 ⊕K

1/2
P1 is the resolved conifold (with KP1 the canonical line bundle

over P1) which may be described using the large N geometric transition from U(N) Chern-

Simons theory on S3 [44]. In this case the Gopakumar-Vafa invariants are simply given by

n0
n(1) = −δn,1, which is the well-known result. Similarly, for p = 2 (and also p = 0) one

has X2 = O ⊕ KP1 (with O the trivial line bundle over P1) and one finds the invariants

n0
n(2) = δn,1, again as expected [51]. These patterns can be further verified by extending

the computations above up to seventh order (see appendix C). For p ≥ 3 our calculations

suggest that there are infinitely many non-vanishing Gopakumar-Vafa invariants of Xp. As

we will see in section 4, this observation is related to the finite radius of convergence of the

topological string perturbation series for p > 2 and it suggests an ultimate reason for the

different phase structures of the theories with p = 0, 1, 2 and p > 2.

2.6 Gross-Taylor expansion as a topological string theory

We will now establish the connection between topological string theory and the Gross-

Taylor string expansion. By specializing to the genus zero contributions, we will further

establish the connection with the Crescimanno-Taylor [41] expansion which will be used

extensively in the next section. Recall from section 2.2 that ordinary Yang-Mills theory

on S2 is reached in the limit where p → ∞ with the area combination gsN p = A fixed.

To describe this limit, we first rewrite the chiral partition function (2.14) in terms of the

relevant parameters as

ZqYM,0
chiral =

∞
∑

n=1

e−( 1
2
− 1

p
)n A

∑

R̂

e−κ
R̂

A/2 N WR̂

(

e A/p N
)2

×
imax
∏

i=1

ni
∏

j=1

(

1 − e− A
p N

(i−j) e−A/p
)2

. (2.63)

The crucial observation is that the quantum dimension (2.15) tends smoothly to the

ordinary classical dimension dim(R̂) of the SU(N) representation R̂ in the limit gs → 0.

This means that, in the double limit N → ∞, p → ∞, the factor dimq(R̂)2 must contain

terms reproducing the expansion of the classical dimension

dim
(

R̂
)

= ξ2n N2n + ξ2n−1 N2n−1 + . . . . (2.64)

These terms correspond to the contributions

dimq

(

R̂
)

= ξ2n

(

p N

A

)2n (

A

p

)2n

+ ξ2n−1

(

p N

A

)2n−1 (

A

p

)2n−1

+ . . . . (2.65)

The subleading terms as gs → 0 are of the form gm
s (gsN)k = ( A

p N )m (A
p )k with m + k > 0

by smoothness of the classical limit. From the explicit expression in (2.63) it follows that
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k ≥ 0. If m < 0 the corrections are (p N
A )|m| (A

p )k = N |m| (A
p )k−|m| and therefore correspond

to A
p corrections in (2.65) to the classical terms given by

dimq

(

R̂
)

= ξ2n N2n

(

1 + α2n
A

p
+ . . .

)

+ξ2n−1 N2n−1

(

1 + α2n−1
A

p
+ . . .

)

+. . . . (2.66)

On the other hand, when m > 0 there are corrections of the type 1
Nm (A

p )k+m which

correspond to both “quantum” contributions to the genus expansion and to A
p corrections.

These terms do not appear at leading order N2 in the free energy.

We can now explicitly match the p → ∞ limit of the chiral topological string expansion

with the usual chiral Gross-Taylor [31] series at leading order. The genus zero chiral free

energy of the topological string is given by

F0

(

t , t̂ ; p
)

=
1

g2
s

∞
∑

n=1

e−n t
2n
∑

k=0

e−2 k t̂
k

∑

k1=0

N̂0
(k1,n,k−k1)

(p) (2.67)

in terms of Gromov-Witten invariants of X̂p. By rewriting this expansion in terms of QCD2

parameters and expanding in 1
p we get

F0(A; p) = N2
∞

∑

n=1

e−n A/2
2n
∑

k=0

∞
∑

l,m=1

kl nm

l!m!

(

−A

p

)l+m−2 k
∑

k1=0

N̂0
(k1,n,k−k1)

(p) . (2.68)

On the other hand, the genus zero chiral free energy of the QCD2 string can be written in

the form

Φ0(A) = N2
∞
∑

n=1

e−n A/2
2n−2
∑

j=0

η
(n)
j Aj (2.69)

since the branch point and Ω-point singularities of the holomorphic string maps generate,

at winding number n, a polynomial of degree 2n− 2 in the area A. The matching of (2.68)

and (2.69) thereby determines the polynomial coefficients η
(n)
j in terms of the leading

behaviour as p → ∞ of Gromov-Witten invariants through

η
(n)
j =

1

(j + 2)!
lim

p→∞
(−p)−j

2n
∑

k=0

(n + k)j+2
k

∑

k1=0

N̂0
(k1,n,k−k1)

(p) . (2.70)

This relationship suggests an explicit realization of two-dimensional chiral Yang-Mills

theory as a topological string theory. From a physical perspective, as the degree of O(−p) →
P1 grows the higher Kaluza-Klein modes of any section of this line bundle decouple and

we may formally identify O(−∞) with the trivial line bundle P1 × C. Thus the Gromov-

Witten invariants of X∞ formally reproduce the counting of holomorphic maps into the

base sphere. We will see some explicit examples of this in section 4. Note that the D-brane

insertions in the fibers of the original fibration (2.1) play a crucial role in this identification.

Let us now describe the mathematical implications of the relationship (2.70). Let

M g(X̂p,n) be the Deligne-Mumford moduli space of stable holomorphic maps from con-
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nected genus g curves to X̂p which represent the class n ∈ H2(X̂p, Z). Then the Gromov-

Witten invariants of X̂p are given by

N̂g
n
(p) =

∫

Mg(X̂p,n)
1 . (2.71)

More precisely, the integral should be evaluated over the virtual fundamental class of

the moduli space of maps. With the appropriate push-forward map one can use virtual

localization techniques to reduce the integral (2.71) to Hodge integrals over the moduli

space of curves with n punctures Mg,n of dimension 3g − 3 + n. While this is always

possible to do in principle, in practise it is quite difficult.

On the other hand, the relationship (2.70) gives such a reduction in the limit p → ∞ by

relating (2.71) to the Gromov-Witten theory of the base P1. For this, let Hg
~µ be the Hurwitz

numbers of P1 corresponding to the partition ~µ = (1µ1 2µ2 · · · ), i.e. the number of genus

g branched covering maps to P1 with ramification ~µ over ∞ and simple ramification over

P1 \ ∞. These integers can be represented as integrals over the moduli space Mg(P
1, n) of

holomorphic maps of genus g and winding number n to P1. Let us illustrate how this works

explicitly in the simplest case of the trivial partition ~µ = (1n), i.e. the case of genus g simple

branched covers of degree n over P1. By the Riemann-Hurwitz theorem, such maps have

r = 2g − 2 + 2n simple ramification points. There is a natural map β : Mg(P
1, n) → Pr

which assigns to each map its branch point locus. Let Ξ be the hyperplane class of Pr

associated to the canonical hyperplane bundle. Then the simple Hurwitz numbers can be

represented as Gromov-Witten integrals [52]–[54]

Hg
n := Hg

(1n) =

∫

Mg(P1,n)
β∗(Ξ) . (2.72)

The virtual localization formula may now be used to compute the integral (2.72). The

standard action of the multiplicative group of complex numbers C× on P1 induces a C×-

action on the moduli space M g(P
1, n) for which the pullback β∗(Ξ) is an equivariant class.

The fixed points of this group action are products of moduli spaces of n-punctured curves

M g,n. The localization formula thereby reduces (2.72) to tautological intersection indices

on Mg,n. The result can be expressed as a Hodge integral as follows. Let Li, i = 1, . . . , n

be the canonical line bundles over Mg,n, and define tautological classes as the first Chern

classes ψi = c1(Li) ∈ H2(M g,n, Q). Let Eg → Mg,n be the rank g Hodge bundle, and

denote the corresponding Chern classes by λk = ck(Eg) ∈ H2k(M g,n, Q). With λ0 := 1,

the localization formula then reads [52]–[54]

Hg
n =

(2g − 2 + 2n)!

n!

g
∑

k=0

(−1)k
∫

Mg,n

λk ∧
n
∧

i=1

(1 − ψi)
−1 (2.73)

for (g, n) 6= (0, 1), (0, 2).

On the other hand, the coefficient of A2n−2/(2n− 2)! in the area polynomials of (2.69)

is precisely the number of topologically inequivalent holomorphic maps P1 → P1 with

2n − 2 branch point singularities of fixed image and no Ω-point singularities. Thus H0
n =
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(2n − 2)! η
(n)
2n−2. Using (2.70) we may thereby write a large p localization formula for the

Gromov-Witten invariants (2.71) as

lim
p→∞

1

p2n−2

2n
∑

k=0

(n + k)2n
k

∑

k1=0

∫

M0

(

X̂p , (k1,n,k−k1)
)

1 =
(2n)!

n!

∫

M0,n

n
∧

i=1

(1 − ψi)
−1 (2.74)

for n 6= 1, 2. The right-hand side of eq. (2.74) can be evaluated explicitly in these simple

instances in terms of the Hodge integrals
∑

ak

∫

M0,n
ψ∧a1

1 ∧· · ·∧ψ∧an
n , giving the anticipated

genus zero Hurwitz formula H0
n = (2n − 2)!nn−3/n!.

With some work one can extend these identifications to both higher genera (g > 0)

and to covering maps with non-simple ramifications of their branch point singularities

(j < 2n − 2 + 2g). In these cases one must take into account the contributions from

Ω-point singularities in the above analysis. In the chiral gauge theory, the singularity

at an Ω-point is a multiple branch point singularity which is described by an arbitrary

permutation on the sheets of the covering space when following the lift of a closed target

space curve on P1 around the Ω-point. These additional singularities feature in nicely in

what is known about the evaluation of the corresponding localization integrals in Gromov-

Witten theory. Any continuous mapping from a Riemann surface to P1 is, up to homotopy,

the composition of a pinch map (collapsing regions of the surface to a single point) and a

branched covering map. The pinch maps are responsible for the Ω-point singularities and

are related to appearance of multiple Hurwitz numbers (ramified over more than one point

than just ∞ on P1) in the computation of the Gromov-Witten invariants of the original

threefold Xp [33]. Physically, they are directly related to the insertions of the fiber D-

branes in the topological string theory on Xp. We will return to the relationship between

Hurwitz numbers and Gromov-Witten invariants in section 4.

3. Matrix model formalism

In this section we shall investigate the large N limit of the chiral sector of q-deformed

Yang-Mills theory on the sphere S2 by means of matrix model techniques. From a detailed

analysis of the resulting saddle-point equation we will obtain the phase structure of the

gauge theory at large N . We then show that in an appropriate strong-coupling phase the

chiral topological string theory of the previous section is recovered from the large N gauge

dynamics.

3.1 Saddle point solution

The saddle point equation governing the distribution of Young tableaux variables in chiral q-

deformed Yang-Mills theory coincides with that of the full coupled gauge theory [34, 38, 39].

The new information is completely encoded in boundary conditions on the solutions to this

equation. In the chiral sector we sum not over all representations but only over those which

have finitely many “large” numbers of rows. With xi := i
N , this means that the lengths of

the rows satisfy the constraints

−ni

N
+ xi −

1

2
= 0 , i ≥ k (3.1)
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for some k such that xk → c0 ∈ R as N → ∞. Equivalently, in the large N limit we can

characterize the chiral theory by setting

n(x) = x − 1

2
, x ≥ c0 (3.2)

where n(x) is the number of boxes at position x which is a monotonic function with n(xi) =
ni
N . In terms of the distribution function ρ(x) for the Young tableaux, this constraint can

be written as

ρ(n) :=
dx(n)

dn
= 1 , c = c0 −

1

2
≤ n ≤ 1

2
. (3.3)

In the matrix model approach we therefore have to solve the saddle-point equation [34, 38,

39]

Az

2
= t̂

∫ 1/2

b
dw ρ(w) coth

(

t̂ (z − w)
)

, (3.4)

where A = 2 t̂ p = N gsp is the area parameter introduced previously and the boundary

conditions for ρ(z) are depicted in figure 5.

b 1/2c

Figure 5: Ansatz for the distribution function ρ(z).

Since ρ(z) = 1 for z ∈ [c, 1
2 ], eq. (3.4) can be cast in the more standard form

Az

2
= t̂

∫ c

b
dw ρ̃(w) coth

(

t̂ (z − w)
)

− log

∣

∣

∣

∣

∣

sinh
(

t̂ (z − 1
2)

)

sinh
(

t̂ (z − c)
)

∣

∣

∣

∣

∣

(3.5)

where ρ̃ := ρ|[b,c]. The new boundary conditions are now translated into a c-dependent

modification of the original potential. This apparently mild modification is similar to the

one which occurs in the two-cut solution of the full non-chiral theory and it will play an

important role in recovering the correct perturbative string expansion. To solve eq. (3.5),

we first reduce it to a classical Riemann-Hilbert problem by changing variables from w and

z to s = e 2 t̂ w+8 t̂ 2c/A and u = e 2 t z+8 t̂ 2c/A to get

A

8 t̂ 2

log(s)

s
+

2

t̂ s
log

∣

∣

∣

∣

∣

s − e t̂+8 t̂ 2c/A

s − e 2 t̂ c+8 t̂ 2c/A

∣

∣

∣

∣

∣

=

∫ e 2 t̂ c+8 t̂ 2c/A

e 2 t̂ b+8 t̂ 2c/A

du
%(u)

s − u
, (3.6)

where

%(u) :=
ρ̃
(

log( e−8 t̂ 2c/A u)/2 t̂
)

2 t̂ u
. (3.7)

Instead of the pair (A, t̂ ) we shall use the variables (A, p), as this will enable a simpler

comparison with the Gross-Taylor series later on. We also introduce the parameters

b′ =
A

p2
(p b + 2 c) , c′ =

Ac

p2
(p + 2) , d′ =

2A

p2

(

c +
p

4

)

(3.8)
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in order to simplify notation.

The solution to the integral equation (3.6) can then be written in terms of the corre-

sponding resolvent function as

ω(z) :=

∫ e c′

e b′
du

%(u)

z − u
=

p2

4π i A

√

(z − e c′)(z − e b′)

×
∮

C

dw

w(w − z)

log(w) + 2
p log

∣

∣

∣

w− e d′

w− e c′

∣

∣

∣

√

(w − e b′)( e c′ − w)
, (3.9)

where the closed contour C encircles the support [ e b′ , e c′ ] of the distribution %(u) with

counterclockwise orientation in the complex z-plane. If we choose the square root and

logarithmic branch cuts in (3.9) as indicated in figure 6, then since the integrand decays as

������������������
������������������
������������������

������������������������������������������������������������������������������������������������������������
�

����������������������
����������������������
����������������������

0

e e e
b' c' d'C C C1

2

Figure 6: The contour C1 surrounds the branch cut (−∞, 0] of log(z), C2 encircles the cut [ e c′ , e d′

]

of log
(

z− e
d
′

z− e c′

)

, while C encloses the physical branch cut [ e b′ , e c′ ] of
√

(z − e b′)(z − e c′).

w−3 at |w| → ∞ we can deform the contour of integration C so that it encircles the cuts

of the two logarithms. This deformation picks up an additional contribution from the pole

at w = z and we find

ω(z) = − p2

4π i A

√

(z − e c′)(z − e b′)





∮

C1

dw

w(w − z)

log(w) + 2
p log

(

w− e d′

w− e c′

)

√

(w − e c′)(w − e b′)

+

∮

C2

dw

w(w − z)

log(w) + 2
p log

(

w− e d′

w− e c′

)

√

(w − e c′)(w − e b′)



 − p2

2A

log(z)

z
− p

Az
log

(

z − e d′

z − e c′

)

= − p2

2A

√

(z − e c′)(z − e b′)

[

∫ −ε

−∞

dw

w(w − z)

1
√

( e c′ − w)( e b′ − w)

+
log(ε)

z
e−(b′+c′ )/2 − 2

p

∫ e d′

e c′

dw

w(w − z)

1
√

(w − e c′)(w − e b′)

]

(3.10)

− p2

2A

log(z)

z
− p

Az
log

(

z − e d′

z − e c′

)

− p

Az

(

d′ − c′
)

e−(b′+c′)/2
√

(z − e c′)(z − e b′),

where ε → 0+ and we have chosen positive square roots for the integrands over the real

line.
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The required integrals are computed in appendix D and one arrives at the resolvent

ω(z) = − p

2As











2 p log

(

e b′/2
√

z − e c′ + e c′/2
√

z − e b′

√
z − e c′ +

√
z − e b′

)

+ p e−(b′+c′ )/2
√

(z − e c′)(z − e b′)

(

b′ + c′ − 2 log

(

e b′/2 + e c′/2

2

)

)

+ 2 log







(√
e d′ − e b′ +

√

z− e b′

z− e c′ ( e d′ − e c′)
)2

e c′ − e b′







+2 e−(b′+c′ )/2
√

(z − e c′)(z − e b′)

×






log







(

e c′/2
√

e d′ − e b′ + e b′/2
√

e d′ − e c′
)2

e c′ − e b′






− c′

















. (3.11)

The asymptotic boundary condition for ω(z) is fixed by the normalization of the spectral

density to be

lim
|z|→∞

ω(z) =
1

z

∫ e c′

e b′
du %(u) =

1
2 + c

z
, (3.12)

which on comparison with the asymptotic behaviour of (3.11) yields a pair of equa-

tions for the unknown parameters b and c of the saddle point solution. The constant

asymptotic value of (3.11) at infinity is given by all terms multiplying the square root
√

(z − e c′)(z − e b′). Requiring them to vanish imposes the boundary condition

p

2

(

b′ + c′ − 2 log
( e b′/2 + e c′/2

2

)

)

+log







(

e c′/2
√

e d′ − e b′ + e b′/2
√

e d′ − e c′
)2

e c′ − e b′






= c′ .

(3.13)

Extracting the subleading behaviour of (3.11) at |z| → ∞ requires just a bit more effort

and is fixed by eq. (3.12) to be

p log

(

e b′/2 + e c′/2

2

)

+ log







(√
e d′ − e b′ +

√
e d′ − e c′

)2

e c′ − e b′






= −A

p

(

1

2
+ c

)

, (3.14)

where we have dropped a term which vanishes by eq. (3.13).

When the equations above for the endpoints of the support interval hold, all the terms

in ω(z) which are proportional to
√

(z − e c′)(z − e b′) vanish identically, and thus the

resolvent function (3.11) assumes the very simple and compact form

ω(z) = − p2

Az
log

(

e b′/2
√

z − e c′ + e c′/2
√

z − e b′

√
z − e c′ +

√
z − e b′

)
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− p

Az
log







(√
e d′ − e b′ +

√

z− e b′

z− e c′ ( e d′ − e c′)
)2

e c′ − e b′






. (3.15)

The distribution function (3.7) is then determined by the jump discontinuity of (3.15)

across the cut [ e b′ , e c′ ] as

%(s) =
ω(s + i ε) − ω(s − i ε)

2π i

=
p2

π As
arctan





√

e c′ − s

s − e b′



 − p2

π As
arctan



 e b′/2−c′/2

√

e c′ − s

s − e b′





+
2 p

π As
arctan





√

s − e b′

e c′ − s

e d′ − e c′

e d′ − e b′



 . (3.16)

This distribution manifestly satisfies the required boundary conditions, since %( e c′) =

p/As and %( e b′) = 0.

3.2 Crescimanno-Taylor equations

Eqs. (3.13) and (3.14) encode most of the gauge dynamics of the large N limit. Be-

fore attempting a systematic solution, we shall verify that they are consistent with the

Crescimanno-Taylor equations for the QCD2 string [41], which will also provide a non-

trivial check of our equations. The usual chiral gauge theory on S2 should emerge in our

framework when p → ∞ with the area A of the sphere fixed. By substituting in the large

p expansions

√

e d′ − e c′ =

(

A

p

)1/2
√

1

2
− c + . . . ,

√

e d′ − e b′ =

(

A

p

)1/2
√

1

2
− b + . . . ,

e c′ − e b′ =
A

p
(c − b) + . . . ,

log

(

e b′/2 + e c′/2

2

)

=
A

2 p
(b + c) + . . . (3.17)

the expression (3.13) takes the form

−A

4
(b + c) = log







(
√

1
2 − c +

√

1
2 − b

)2

(c − b)






. (3.18)

This is the first Crescimanno-Taylor equation. Performing the same expansion in eq. (3.14)

at leading order again recovers eq. (3.18).
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The second Crescimanno-Taylor equation appears by expanding either of eqs. (3.13)

or (3.14) to second order in 1
p , giving the same result

A

16
(b − c)2 +

√

(

1

2
− b

)(

1

2
− c

)

= 1 . (3.19)

This equation appears only at second order in 1
p because we have summed the equations

with a weight depending on p in order to have the simplest possible expressions. This

procedure mixes the various orders of the expansion.

3.3 Phase transitions

The problem of the existence of solutions to eqs. (3.13) and (3.14) is most easily addressed

by introducing a new set of variables that are centered around the point 1
2 , given by the

Kähler modulus t = A
2 p (p − 2) and the new endpoint parameters

b̂ = d′ − b′ =
2 t

p − 2

(

1

2
− b

)

, ĉ = d′ − c′ =
2 t

p − 2

(

1

2
− c

)

. (3.20)

In terms of these parameters eq. (3.13) takes the form

−p log

(

e b̂/2 + e ĉ/2

2

)

+ log







(
√

e b̂ − 1 +
√

e ĉ − 1
)2

e b̂ − e ĉ






= − t

2

p + 2

p − 2
, (3.21)

while eq. (3.14) becomes

p log

(

e−b̂/2 + e−ĉ/2

2

)

+ log







(
√

1 − e−b̂ +
√

1 − e−ĉ
)2

e−ĉ − e−b̂






=

t

2
. (3.22)

In principle one should now fix the coupling constant t and solve for the endpoints b̂ and

ĉ. However, this approach is not the most practical one for a numerical analysis. Thus

we choose instead to fix x = e−ĉ/2 ∈ [0, 1] and determine the corresponding variables

y = e−b̂/2 ∈ [0, 1] and t. From eq. (3.22) we have

t = 2 p log

(

x + y

2

)

+ 4 log

(√
1 − x2 +

√

1 − y2

√

x2 − y2

)

, (3.23)

and substituting this into eq. (3.21) yields

T (x, y; p) := −1 +
4

p
p−2 x y

(

x2 − y2
)

4
(p−2) p

(

x
√

1 − y2 + y
√

1 − x2
)

2
p

(x + y)
2 p

p−2

(√
1 − x2 +

√

1 − y2
)

2(2+p)
(p−2) p

= 0 . (3.24)

Once we have fixed the geometrical datum p and given our choice for x, the algebraic

equation (3.24) determines y and eq. (3.23) then gives the Kähler modulus t.
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When we take into account the constraint y ≤ x (i.e. c ≥ b) eq. (3.24) does not always

admit a solution for a given p. Generally, the interval [0, 1] = I1 q I2 q I3 decomposes into

three disjoint, connected subintervals in the following manner. For x ∈ I1 there are two

solutions y of eq. (3.24), for x ∈ I2 there are no solutions, and for x ∈ I3 there are again

two solutions. The sizes of the of these subintervals depend on p. The region I1 increases as

p grows, while I2 and I3 decrease very rapidly. A representative example of this behaviour

is depicted in figure 7. We also have to impose the additional constraint on the spectral

0.2 0.4 0.6 0.8 1

-0.1

-0.05

0

0.05

0.1

Figure 7: Plot of T (x, y; p) as a function of y for p = 7 and x = 0.4 ∈ I1 (left curve), x = 0.89 ∈ I2

(center curve) and x = 0.95 ∈ I3 (right curve).

distribution that ρ ≤ 1. This requirement immediately rejects the solution in the interval

I1 for which the density has the form depicted in figure 8.

0.1 0.2 0.3 0.4 0.5

0.2

0.4

0.6

0.8

1

Figure 8: Unphysical solution ρ(s) versus s for x = 0.4 ∈ I1.

A clearer picture of the situation is obtained if we draw the phase diagram in the

(c, t)-plane for various values of the geometrical parameter p (figure 9). The qualitative

behaviour is very similar to that of ordinary chiral QCD2 [41]. The lines coming from the

region of large t all represent physical solutions up to a certain critical value t+c (p). This

means that the one-cut solution allows us to explore the region with large Kähler parameter.

When the lines reach and go below t = t+c (p), the distribution function ρ becomes larger

than 1 and a phase transition occurs. Rather remarkably, the value t+c (p) is very close

to the value of the Kähler modulus that triggers the phase transition in the full coupled
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-0.4 -0.2 0 0.2 0.4

5

10

15

20

25

30

p=3

p=3

p=7

p=7

p=20

p=20

Figure 9: Behaviour of t as a function of c for p = 3, 7, 20. The dashed parts of the curves indicate

the unphysical regions having ρ > 1. The dots separating a dashed line from a solid line represent

the critical points of a phase transition. The other dots represent diramation points for the solutions

of the equation T (x, y; p) = 0 for each branch.

q-deformed gauge theory [34, 38, 39]. At this point no physical solution exists until we

reach a second critical point t−c (p). This point connects the line coming from the region of

small t. The distribution function ρ is again smaller than 1 for 0 < t < t−c (p) and a second

phase transition occurs at t = t−c (p). We conclude that our one-cut solution describes the

large N gauge theory in two distinct phases, one which covers the large values of the Kähler

parameter t and the other describing the small values of t. To connect these two phases,

one would have to construct an appropriate two-cut solution in the intermediate region.

3.4 Topological strings in the strong-coupling phase

We expect that the topological string theory on Xp will emerge from the q-deformed gauge

dynamics when t is large, i.e. for t > t+c (p) where the one-cut solution constructed above is

valid. We therefore seek a consistent expansion of the solution of the saddle-point equation

for large values of the coupling constant t. For this, we assume that the endpoints b and

c are finite in the limit t → ∞, or equivalently that b̂ and ĉ diverge at most linearly in t.
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Then eqs. (3.13) and (3.14) reduce for large t to

b̂ = ĉ =
2 t

p − 2
= 2 t̂ , (3.25)

or equivalently b = c = −1
2 . This means that at strong-coupling the distribution function

ρ(z) tends to become flat and symmetric about the origin. The particular form of the saddle

point equation (3.5) suggests that corrections to this result are exponentially suppressed

in t. Thus we look for a solution of the form

b̂ = 2 t̂ +
∞
∑

n=1

rn τn ,

ĉ = 2 t̂ +

∞
∑

n=1

sn τn (3.26)

where τ := e−ξ t/2. Imposing consistency of our ansatz fixes the parameter ξ = 1.

Proceeding iteratively, we arrive at

b̂ = 2 t̂ +
[

2 − 2 e−2 t̂
]

e−t/2 +
[

1 − p + 2 p e−2 t̂ − (1 + p) e−4 t̂
]

e−t

+

[

2

3
− 2 p + p2 +

(

2 p − 3 p2
)

e−2 t̂ +
(

2 p + 3 p2
)

e−4 t̂

−
(

2

3
+ 2 p + p2

)

e−6 t̂

]

e−3 t/2 + O
(

e−2 t
)

,

ĉ = 2 t̂ −
[

2 − 2 e−2 t̂
]

e−t/2 +
[

1 − p + 2 p e−2 t̂ − (1 + p) e−4 t̂
]

e−t

−
[

2

3
− 2 p + p2 +

(

2 p − 3 p2
)

e−2 t̂ +
(

2 p + 3 p2
)

e−4 t̂

−
(

2

3
+ 2 p + p2

)

e−6 t̂

]

e−3 t/2 + O
(

e−2 t
)

. (3.27)

Note that the corrections are order by order polynomials in e−2 t̂. This is very different

from what happens in the full coupled theory where the corrections are given by infinite

series. If we identify the power of e−t/2 with the winding number of the topological

string expansion, then the behaviour of our solutions is exactly that expected from string

theory. We recall from section 2.2 that the large N expansion of the partition function was

organized in exactly the same way.

Our next goal is to compute the chiral partition function for large values of the Kähler

parameter t. For this, we will calculate the derivative of the free energy with respect to

the area A at fixed t̂ = gsN
2 . We have [34]

∂F0

(

A , t̂ ; p
)

∂A
=

1

2

∫ 1/2

b
dx x2 ρ(x) =

1

2

∫ c

b
dx x2 ρ(x) +

1

2

(

1

24
− c3

3

)

(3.28)

and so we need to compute the integral

I :=
1

2

∫ c

b
dx x2 ρ(x) . (3.29)
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We change variable x = p log( e−2 A c/p2
u)/A to get

I =
p2

2A2

∫ e c′

e b′
du log2

(

e−2 A c/p2
u
)

%(u) . (3.30)

To express the result in terms of the endpoint parameters b̂ and ĉ, we set u = s e d′ and

use the explicit solution (3.16) to obtain

I =
p4

2πA3

∫ e−ĉ

e−b̂

ds

s
log2

(

e A/2ps
)

[

arctan

(
√

e−ĉ − s

s − e−b̂

)

− arctan

(

e (ĉ−b̂)/2

√

e−ĉ − s

s − e−b̂

)

+
2

p
arctan





√

s − e−b̂

e−ĉ − s

1 − e−ĉ

1 − e−b̂





]

. (3.31)

To simplify the analysis, it is convenient to integrate by parts to get

I =
c3

6
− 1

96π A3
√

1 − e−ĉ

∫ e −ĉ

e−b̂

ds

s (s − 1)

√

( e−ĉ − s)(s − e−b̂)

×
[

e−(b̂+ĉ)/2
√

1 − e−ĉ p (1 − s) − 2 e−ĉ

√

1 − e−b̂ s

+

(

2

√

1 − e−b̂ +
√

1 − e−ĉ p (s − 1)

)

s

]

(

A + 2 p log(s)
)3

. (3.32)

Analyzing the behaviour of this integral directly is hampered by the fact that we are

exploring the singular region where the two endpoints begin to coincide. We will therefore

perform a change of variable that makes the region of integration independent of t. The

transformation

s =
1

2

[

e−b̂ + e−ĉ −
(

e−ĉ − e−b̂
)

cos(θ)
]

(3.33)

maps the integration domain onto θ ∈ [0, π]. It also eliminates the square root in the

denominator of the integrand in I and we arrive at

I =
c3

6
− 1

48π A3
√

1 − e−ĉ

∫ π

0

dθ

e b̂ + e ĉ − 2 e b̂+ĉ +
(

e ĉ − e b̂
)

cos(θ)

× 1

e b̂ + e ĉ +
(

e ĉ − e b̂
)

cos(θ)

[

2 e b̂

√

1 − e−b̂
(

e b̂ + e ĉ −
(

e b̂ − e ĉ
)

cos(θ)
)

− e (b̂+ĉ)/2
√

1 − e−ĉ p
(

e b̂ + e ĉ − 2 e b̂+ĉ +
(

e ĉ − e b̂
)

cos(θ)
)

+
(

e b̂ + e ĉ +
(

e ĉ − e b̂
)

cos(θ)
)

×
(

2 e b̂+ĉ

√

1 − e−b̂ +

√
1 − e−ĉ p

2

(

e b̂ + e ĉ − 2 e b̂+ĉ +
(

e ĉ − e b̂
)

cos(θ)
)

)]

×



A + 2 p log





e−b̂−ĉ
(

e b̂ + e ĉ − ( e b̂ − e ĉ) cos(θ)
)

2









3

. (3.34)
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Expanding I as a series in e−t and integrating over θ, we arrive finally at

∂F0

(

A , t̂ ; p
)

∂A
=

(

1 − e−2 t̂
)2

(p − 2)2

8 t2

∞
∑

n=1

e−n t Gn

(

t , t̂ ; p
)

, (3.35)

where the first three contributions are given by

G1 = 1 ,

G2 =
e−4 t̂

4

[

1 + 2 p (2 + p) + e 4 t̂
(

1 + 2 (p − 2) p
)

+ 2 e 2 t̂
(

1 − 2 p2
)

]

− e−4 t̂

2 t

[

(

1 − e 2 t̂
) (

1 + e 2 t̂ (p − 1) − p
)

(p − 2)
]

, (3.36)

G3 =
1

9
− p +

5

2
p2 − 2 p3 +

1

2
p4 + e−6 t̂

(

2

9
+ p − p2 − 4 p3 − 2 p4

)

+ e−2 t̂

(

2

9
− p − p2 + 4 p3 − 2 p4

)

+ e−8 t̂

(

1

9
+ p +

5

2
p2 + 2 p3 +

1

2
p4

)

+ e−4 t̂

(

1

3
− 3 p2 + 3 p4

)

− 1

t

[2

3
− 11

3
p +

17

3
p2 − 10

3
p3 +

2

3
p4

+ e−4 t̂
(

4 p − 2 p2 − 8 p3 + 4 p4
)

− e−8 t̂

(

2

3
+ 3 p +

7

3
p2 − 2

3
p3 − 2

3
p4

)

+ e−2t̂

(

2

3
+ p − 26

3
p2 +

28

3
p3 − 8p4

3

)

− e−6t̂

(

2

3
− 5

3
p − 22

3
p2 − 4

3
p3 +

8

3
p4

)]

.

To obtain the free energy we now have to integrate over the area A. For this, we express p

and t in terms of A and t̂ as p = A
2 t̂

and t = A
2 − 2 t̂ to write the expansion (3.35) in terms

of

Γn

(

t̂ ; A
)

:=
1

8 t̂ 2

(

1 − e−2 t̂
)2

e−n
(

A
2
−2 t̂

)

Gn

(

A

2
− 2 t̂ , t̂ ;

A

2 t̂

)

. (3.37)

For the first three terms one has

Γ1 =
e−A

2
−2 t̂

(

1 − e 2 t̂
)2

8 t̂ 2
,

Γ2 =
e−A−4 t̂

(

1 − e 2 t̂
)2

64 t̂ 4

[

A2
(

1 − e 2 t̂
)2

− 2A
(

1 − e 2 t̂
) (

1 − 2 t̂ − e 2 t̂
(

1 + 2 t̂
)

)

−4
(

1 + e 2 t̂
)

t̂
(

2 − t̂ − e 2 t̂
(

2 + t̂
)

)

]

,

Γ3 =
e− 3

2 (A+4 t̂ ) (

1 − e 2 t̂
)2

2304 t̂ 6

[

9A4
(

1 − e 2 t̂
)4

− 24A3
(

1 − e 2 t̂
)3 (

1 − 3 t̂ − e 2 t̂
(

1 + 3 t̂
)

)

+ 36A2
(

1 − e 2 t̂
)2

t̂
(

4 − 5 t̂ − 8 t̂ e 2 t̂ − e 4 t̂
(

4 + 5 t̂
)

)

− 48A
(

1 − e t̂
)

t̂ 2
(

5 + 3 e 2 t̂
(

1 − 2 t̂
)

− 3 t̂ − 3 e 4 t̂
(

1 + 2 t̂
)

− e 6 t̂
(

5 + 3 t̂
)

)
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−32 t̂ 3
(

1 + e 2 t̂ + e 4 t̂
) (

3 − t̂ − t̂ e 2 t̂ − e 4 t̂
(

3 + 2 t̂
)

)

]

. (3.38)

These expressions are now easily integrated over A and we arrive at the free energy

components

Fn

(

t̂ ; p
)

:= 4t̂2
(

1 − e−2 t̂
)−2

e n
(

A
2
−2 t̂

)

[ ∫

dA Γn

(

t̂ ; A
)

]∣

∣

∣

∣

A=2 p t̂

. (3.39)

For the first three contributions we find

F1 = 1 ,

F2 =
e−4 t̂

8

[

1 + 4 p + 2 p2 + e 2 t̂
(

2 − 4 p2
)

+ e 4 t̂
(

1 − 4 p + 2 p2
)

]

,

F3 =
e−8 t̂

54

[

2 + 18 p + 45 p2 + 36 p3 + 9 p4 + 6 e 4 t̂
(

1 − 9 p2 + 9 p4
)

+ e 8 t̂
(

2 − 18 p + 45 p2 − 36 p3 + 9 p4
)

+ 2 e 6 t̂
(

2 − 9 p − 9 p2 + 36 p3 − 18 p4
)

+ 2 e 2 t̂
(

2 + 9 p − 9 p2 − 36 p3 − 18 p4
)

]

. (3.40)

These expressions coincide with the ones obtained in (2.26) for the topological string theory

on X̂p.

4. Analytic properties of the topological string perturbation series

Motivated by the saddle-point analysis of the phase structure of the chiral gauge theory, in

this section we shall investigate the convergence properties of the perturbative topological

string expansion of the partition function. In ordinary chiral Yang-Mills theory on S2 the

large N phase transition can be analysed from the string theory perspective [40]. Analytic

and numerical results indicate that the string perturbation series has a finite radius of

convergence which coincides with the critical points. In the Gross-Taylor string language,

the phase transition is driven by the entropy of branch point singularities of the string

covering maps [40]. Here we will perform an analogous investigation for the q-deformed

chiral gauge theory and show that a similar picture emerges, thereby supporting the results

of the previous section.

4.1 Genus zero

Recall that the genus zero free energy has the form

F0

(

t ; p
)

=

∞
∑

n=1

e−n t
2n
∑

k=0

e
− 2 k t

p−2 N0
n,k(p) (4.1)

where N0
n,k(p) is a polynomial in p of degree 2n − 2. These polynomials are given in

eq. (2.26) for the first six degrees, and generally they can be parameterized as

N0
n,k(p) =

2n−2
∑

m=0

C0
m(n, k) pm . (4.2)
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To study the convergence properties of the series (4.1), we investigate its asymptotic large

n behaviour. The dominant contributions from the genus zero Gromov-Witten invari-

ants (4.2) are the highest degree monomials

lim
n→∞

N0
n,k(p) = C0

2n−2(n, k) p2n−2 . (4.3)

We are thereby led to analyse the series

F∞
0

(

t ; p
)

=

∞
∑

n=1

e−n t p2n−2
2n
∑

k=0

C0
2n−2(n, k) e− 2 k t

p−2 . (4.4)

From a direct inspection of the first six orders in eq. (2.26), we conjecture that the

combinatorial coefficients in (4.3) are given by

C0
2n−2(n, k) = (−1)k

nn−3

n!

(

2n

k

)

. (4.5)

We will motivate this conjecture below. It implies that the sum over k in (4.4) can be

carried out explicitly and the expansion written as

F∞
0

(

t ; p
)

=

∞
∑

n=1

nn−3

n!
p2n−2

(

1 − e
− 2 t

p−2

)2n
e−n t . (4.6)

The radius of convergence of this series is easily determined. By substituting the Stirling

approximation

n!
n→∞−→

√
2π n nn e−n (4.7)

we find that the large n behaviour of the free energy converges for

p2
(

1 − e− 2 t
p−2

)2
e−(t−1) ≤ 1 . (4.8)

We can perform a simple check of this bound by looking at the limit in which the

q-deformed gauge theory reduces to ordinary Yang-Mills theory. Rewriting eq. (4.8) in

terms of the QCD2 area parameter A = N gsp gives

p2
(

1 − e−A/p
)2

e−
(

A
2
−A

p
−1

)

≤ 1 , (4.9)

and in the limit p → ∞ with A fixed we find

A2 e−
(

A
2
−1

)

≤ 1 . (4.10)

This coincides with the convergence bound derived in [40].

To understand better the approximation (4.3) and the extrapolation of the coeffi-

cients (4.5) to all orders, we need to take a closer look at the mechanism by which we

recover the chiral QCD2 string perturbation series from eq. (4.1). For this, let us reinsert

the string coupling constant gs as in eq. (2.67) to write

F0(A; p) =
N2p2

A2

∞
∑

n=1

e−n A/2
2n
∑

k=0

e (n−k) A/p N0
n,k(p) (4.11)
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and expand the free energy in the limit p → ∞ as

F0(A; p) =
N2p2

A2

∞
∑

n=1

e−n A/2
2n
∑

k=0

2n−2
∑

m=0

C0
m(n, k) pm

∞
∑

l=0

1

l!

(

A

p
(n − k)

)l

. (4.12)

In the undeformed limit, the only contribution to the leading area term A2n−2 comes from

the combination (4.3). The assumption that eq. (4.5) is valid at all orders implies that the

coefficient of A2n−2 is given by

2n
∑

k=0

(n − k)2n

(2n)!
C0

2n−2(n, k) =
2n
∑

k=0

(−1)k

(2n)!
(n − k)2n nn−3

n!

(

2n

k

)

=
nn−3

n!
. (4.13)

In [41] it was shown that this is exactly the pertinent coefficient of A2n−2. It is equal to the

number of (topological classes of) holomorphic maps P1 → P1 with 2n − 2 simple branch

point singularities. In the given limit the free energy (4.12) thus reduces to

Φ∞
0 (A) = N2

∞
∑

n=1

nn−3

n!
A2n−2 e−n A/2 . (4.14)

In the Gross-Taylor string description, this is the contribution to the chiral QCD2 free

energy coming from covering maps with only branch points and no Ω-point singularities.

Our conjecture (4.5) thereby passes a highly non-trivial check.

Subleading terms in the limit p → ∞ with A fixed must then reproduce the full

undeformed chiral free energy. In ordinary chiral Yang-Mills theory, the upper radius of

convergence of the string perturbation series (4.14) can be estimated to be A+
c ' 11.9,

while the one evaluated from the saddle-point equation for the full chiral free energy is

approximately 10.189 [41]. The string estimate gives a value which is 0.2 times larger than

the actual one. In the q-deformed gauge theory one can also compare the result coming

from an estimate of the radius of convergence of the string perturbation series with the

numerical evaluation of the saddle-point equation from section 3.3, and with the exact

critical point of the full coupled gauge theory. The results are summarized in table 1.

We see that the difference between the non-chiral and chiral critical normalized couplings

t̂nc(p) = 2 tnc(p)/(p − 2) and t̂ num
c (p) = 2 t num

c (p)/(p − 2) is roughly constant throughout

the range of p and of the order 2− 3× 10−3. The difference between the string determined

and numerically determined normalized critical couplings is roughly 20% for p > 3, and

then starts to grow out of control for smaller values of p. We have also included non-integer

values of p to illustrate that t̂ num
c (p) and t̂nc(p) both diverge with the same values as p → 2,

reflecting the absence of a large N phase transition for p ≤ 2.

It is interesting to note that in the k = 0 sector of the chiral theory where the fiber

D-branes are neglected, the closed topological string amplitude on Xp also has a finite

radius of convergence that can be estimated in the same way. The k = 0 contribution to

the chiral free energy (4.4) is given by
∑

n≥1
nn−3

n! p2n−2 e−n t, which converges for

p2 e−(t−1) ≤ 1 . (4.15)

This is very similar to the chiral QCD2 result (4.10).
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p t̂nc(p) = 2 tnc(p)
p−2 t̂ num

c (p) = 2 t num
c (p)
p−2 t̂ str

c (p) = 2 t str
c (p)
p−2

1000 0.99 × 10−2 1.02 × 10−2 1.19 × 10−2

300 3.29 × 10−2 3.40 × 10−2 3.97 × 10−2

100 0.99 × 10−1 1.02 × 10−1 1.19 × 10−1

30 3.30 × 10−1 3.40 × 10−1 3.98 × 10−1

10 1.00 1.04 1.23

7 1.46 1.51 1.81

5 2.12 2.19 2.72

3 4.16 4.28 6.39

2.1 10.9 11.1 49.7

2.01 19.5 19.8 479

2.001 28.6 28.9 4770

Table 1: The non-chiral critical coupling constant t̂nc(p) is obtained from the full coupled gauge

theory [34, 38, 39]. The chiral critical coupling t̂ num
c

(p) is the larger of the two critical points

obtained from the two endpoint equations of the previous section plus the additional equation

ρ′(c) = 0 signalling the boundary of the physical region. The critical point t̂ str
c

(p) is evaluated from

the topological string perturbation series as the larger value of the two solutions to the estimate for

the radius of convergence. We have normalized the variables with a factor 2/(p− 2) because, with

this choice, the equation makes sense for any value of p.

4.2 Genus one

Before moving on to discuss the implications of these results, it is natural to ask whether

or not the finite radius of convergence of the perturbative expansion of the free energy is

an artifact of the genus zero approximation to the full string theory. We will now show

that this behaviour persists at higher genera by computing the radius of convergence of

the genus one partition function. Its generic form is similar to that of the genus zero case

and is given by

F1

(

t ; p
)

=
∞
∑

n=1

e−n t
2n
∑

k=0

e− 2 k t
p−2 N1

n,k(p) , (4.16)

where the genus one Gromov-Witten invariants N1
n,k(p) are polynomials in the variable

p of degree 2n. Explicit forms for these polynomials are given for the first five degrees in

appendix B, and in general they may be parameterized as

N1
n,k(p) =

2n
∑

m=0

C1
m(n, k) pm . (4.17)

At large n the dominant contributions again come from the maximal degree monomials

lim
n→∞

N1
n,k(p) = C1

2n(n, k) p2n , (4.18)
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and the radius of convergence can be estimated from the infinite series

F∞
1

(

t ; p
)

=

∞
∑

n=1

e−n t p2n
2n
∑

k=0

C1
2n(n, k) e− 2 k t

p−2 . (4.19)

Analogously to the genus zero case, by inspection of the first five orders of the series

we conjecture that

C1
2n(n, k) = (−1)k

R(n)

(2n)!

(

2n

k

)

(4.20)

where

R(n) =
(2n)!

24n!

(

nn − nn−1 −
n

∑

m=2

(m − 2)!

(

n

m

)

nn−m

)

=: (2n)! H(n) . (4.21)

In the Gross-Taylor description, the combinatorial coefficient R(n) counts the number of

branched coverings of a sphere by a torus with simple ramification corresponding to the

trivial partition ~µ = (1n) [55], i.e. with no Ω-point singularities. We can now perform the

sum over k explicitly in (4.19) to get

F∞
1

(

t ; p
)

=
∞
∑

n=1

H(n) p2n
(

1 − e− 2 t
p−2

)2n
e−n t . (4.22)

The radius of convergence of this series can be easily evaluated by substituting the asymp-

totic behaviour (see appendix B)

lim
n→∞

H(n) =
e n

48n
. (4.23)

The free energy (4.22) thereby converges when

p2
(

1 − e− 2 t
p−2

)2
e−(t−1) ≤ 1 . (4.24)

This is identical to the convergence bound obtained at genus zero in (4.8), suggesting that

the divergence of the topological string perturbation series is a generic property of the

partition function which holds to all orders in the genus expansion.

4.3 Phase transition as a Hagedorn transition

The results of this section indicate that the perturbative expansion of the topological string

theory under examination has a finite radius of convergence. In particular, even the closed

topological string amplitude on Xp exhibits this same behaviour according to eq. (4.15).

We immediately see that this conclusion is incorrect for the cases p = 1, 2. For p = 1 we

cannot disregard the lower powers of p in estimating the asymptotic behaviour, and the

perturbative contribution to the free energy sums to a polylogarithm function giving

F 0
0,0
0,0

(t; 1) = n0
1(1) Li3

(

e−t
)

(4.25)
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at genus zero [44], as n0
1(1) is the only non-vanishing Gopakumar-Vafa invariant in this

case. The case p = 2 is more subtle to handle but since again it leads to just one non-

vanishing integer invariant n0
1(2), the same formula holds. The cases p = 1, 2 are special

both from the point of view of the saddle-point analysis performed in this paper and in

the full partition function [34, 38, 39] constructed through coupled SU(N) representations.

Instead, for p ≥ 3 we expect our analysis to be correct. The Gopakumar-Vafa invariants in

this case do not seem to vanish after any finite degree, and the topological string amplitude

at genus zero is organized as an infinite series

F 0
0,0
0,0

(t; p) =
∞
∑

k=1

n0
k(p) Li3

(

e−k t
)

(4.26)

that can diverge at some critical value t = tc(p). From eq. (4.15) we see that the string

expansion should diverge for t < tc(p) with

tc(p) = 1 + 2 log(p) . (4.27)

One can now speculate on the meaning of this divergence in the context of closed

topological string theory, and wonder if there is any method of analytical continuation

that would allow the definition of the theory below the critical radius. Because the topo-

logical string partition function counts BPS bound states of D0-D2 branes in Type IIA

string theory on Xp weighted by their BPS energy [49, 50], it is tempting to propose an

interpretation of the divergence as a sort of Hagedorn transition. The number of BPS

states, which are counted by the Gopakumar-Vafa invariants, grows exponentially leading

to a Hagedorn-like behaviour.

Coming back to the chiral string theory studied in this paper we see that the string

perturbation series converges in two different regions of Re(t) > 0, in contrast to the non-

chiral string theory. This mimicks the behaviour obtained from the saddle-point analysis in

section 3.3 (see figure 9). We have already noted that the larger critical point derived from

eq. (4.8) is in good agreement with the higher phase transition point. The region of small

t instead does not seem to be well described by the string estimate, as the big difference

between the numerical and the analytical evaluations of the second critical point shows.

5. Conclusions

In this paper we have analysed the large N limit of the chiral sector of q-deformed Yang-

Mills theory on the sphere and its relation with the topological string, as a part of the

project initiated in [34]. We have found a rich picture where a toric structure and the

geometry of its rationally embedded curves emerge from the chiral sector of the gauge

theory. Confirming the proposal of [28, 34], the strong-coupling phase of q-deformed chiral

Yang-Mills theory is a topological string theory and its counting of branched covering maps

is related to the counting of worldsheet instantons in the topological sigma-model. The

phase structure of the gauge theory is similar to the familiar Crescimanno-Taylor picture, to

which it is smoothly connected in the undeformed limit. The presence of a phase transition

is also confirmed by the finite radius of convergence of the perturbative string expansion.
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In the strong coupling phase the chiral deformed theory is related to an emerging toric

geometry through the topological vertex formalism of [42]. The gauge theory thus captures

the Calabi-Yau geometry with the appropriate D-brane insertions that are relevant for the

counting of the black hole microstates in the effective four dimensional supergravity theory.

In this setup the “distance” between the fiber D-branes and the base sphere plays the role

of a geometric Kähler modulus. Remarkably, the large N chiral q-deformed theory can be

used efficiently to compute Gromov-Witten and Gopakumar-Vafa invariants of the toric

geometry. On the other hand, the Gross-Taylor expansion of QCD2 is recovered in a

suitable double scaling limit. This expansion is known to compute Hurwitz numbers, the

combinatorics of branched coverings of the sphere. This connection is summarized by the

explicit localization formula for the Gromov-Witten invariants. Moreover, this relation

can be exploited to study the analytic properties of the topological string perturbation

series. The existence of a finite radius of convergence reflects the phase structure that we

derived from a numerical analysis of the matrix model. Because the topological string is

connected to the counting of BPS states, the divergence of its perturbation series could be

physically related to a Hagedorn transition. A possibly related phase transition has been

found recently in [56], where the topological N = 4 gauge theory is studied which closely

resembles the gauge theory defined on the N D4-branes that localizes to the q-deformed

Yang-Mills theory.

Together with the results in [34] we find a satisfactory and consistent confirmation

of the ideas presented in [28]. The deformed Yang-Mills theory that computes the BPS

degeneracies of four-dimensional black holes is deeply related to the geometrical invariants

of the relevant Calabi-Yau threefold. On the other hand, these are the objects under-

lying the topological string amplitudes that compute the four-dimensional effective field

theory F-terms. The phase structure of the gauge theory is reflected in the topological

string amplitude in a very precise fashion. The topological string theory also provides

an explicit realization of the Gross-Taylor string expansion of the q-deformed Yang-Mills

theory.

In principle, the techniques used in this paper can be extended to compute Gromov-

Witten invariants for the more general geometries of [28]. Similar issues were already

addressed in [33]. The chiral expansion of q-deformed Yang-Mills theory could in general

lead to a better understanding of the relevant Calabi-Yau threefolds.

It would be fruitful to understand better the implications of the phase transition for

black holes physics. In the coupled expansion we encountered a third-order phase transition

of Gross-Witten type. Recently it has been proposed [57, 58] that such behaviour could be

related to a change of regime from a macroscopic black hole to a perturbative string state,

in the spirit of the Horowitz-Polchinski transition [59]. On the other hand the exponential

growth in the density of BPS states observed here should suggest some type of Hagedorn

behaviour. It would be interesting to find a string dual exhibiting the same growth of

states at the perturbative level, as in the correspondence between heterotic strings on T6

and Type IIA strings on K3 × T2 [60], and to understand the phase transition there as

done in [15].
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A. Degree zero partition function

In this appendix we will derive the contribution Z0(q) of constant maps to the topological

string partition function by computing the normalization of the q-deformed Yang-Mills

partition function. For this, we consider the quantity

S00(q,N) :=
∏

1≤i<j≤N

[

q(j−i)/2 − q−(j−i)/2
]

= exp

[

−
∑

1≤i<j≤N

(

j − i

2
log(q) − log

(

1 − qj−i
)

)]

, (A.1)

where the second line holds up to an irrelevant phase factor. The first term in the expo-

nential can be easily summed according to

∑

1≤i<j≤N

j − i

2
=

1

2

N−1
∑

i=1

(

N (N + 1)

2
− i (i + 1)

2
+ i2 − N i

)

=
N2 (N − 1)

12
. (A.2)

In the second term, since q = e−gs ∈ (0, 1) and j − i > 0 we can expand the logarithm in

powers of q to obtain

∑

1≤i<j≤N

log
(

1 − qj−i
)

= −
∞
∑

m=1

N−1
∑

i=1

q−i m

m

qm (N+1) − qm (i+1)

qm − 1
(A.3)

= −
∞
∑

m=1

(

N qm

m (1 − qm)
− qm

m (1 − qm)2
+

qm (N+1)

m (1 − qm)2

)

.

The first two terms in (A.4) can be rewritten in more familiar forms by expanding again

in powers of q to get

−
∞
∑

m=1

N qm

m (1 − qm)
= −N

∞
∑

m=1

∞
∑

n=1

qm n

m
= N log

(

η(q)
)

− N

24
log(q) (A.4)

where

η(q) = q1/24
∞
∏

n=1

(1 − qn) (A.5)

is the Dedekind function, and similarly

∞
∑

m=1

qm

m (1 − qm)2
=

∞
∑

m=1

∞
∑

n=1

n

m
qm n = log

(

M(q)
)

(A.6)

where

M(q) =

∞
∏

n=1

1

(1 − qn)n
(A.7)
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is the McMahon function. The series expansion of (A.7) is the generating function
∑

Y q|Y|

for plane partitions Y which can be used to define the topological vertex of section 2.3.

Collecting everything together we arrive at

log
(

S00(q,N)
)

= − 1

24

(

2N2 (N − 1) + N
)

log(q) + N log
(

η(q)
)

+ log
(

M(q)
)

+ log
(

N0(q,Q)
)

, (A.8)

where we have introduced the function

N0(q,Q) = exp

(

−
∞
∑

n=1

Bn(q) Qn

)

(A.9)

with Q := qN = e−gsN and

Bn(q) =
qn

n (1 − qn)2
. (A.10)

The function N0(q,Q) encodes the nonperturbative corrections to the degree zero map

contribution, which are immaterial in the large N limit. We may therefore factor it out of

the partition function, after which we arrive at the result (2.48) reported in the main text.

The corresponding free energy

F0(q) = lim
N→∞

log

(

S00(q,N)

N0(q,Q)

)

(A.11)

admits a genus expansion F0 =
∑

g≥0 g2g−2
s F0

g. Its coefficients reproduce the degree zero

Gromov-Witten invariants N̂g
(0,0,0)(p) = Ng

0(p) which can be expressed entirely in terms

of classical intersection indices and characteristic classes of the threefold Xp as

N0
0(p) =

1

3!

∑

αa1 ,αa2 ,αa3∈H∗(Xp,Z)

∫

Xp

αa1 ∧ αa2 ∧ αa3 ,

N1
0(p) = − 1

24

∫

Xp

τ ∧ c2(Xp) ,

Ng
0(p) =

(−1)g |B2g B2g−2|
4g (2g − 2) (2g − 2)!

∫

Xp

(

c3(Xp) − c1(Xp) ∧ c2(Xp)
)

(A.12)

with g ≥ 2. Here {αa} is a basis of H∗(Xp, Z) modulo torsion, the class τ is the degree

two cohomology generator and cn(Xp) is the n-th Chern class of the tangent bundle TXp.

The coefficients B2n ∈ Q are the Bernoulli numbers.

B. Genus one partition function

In this appendix we collect the first five contributions to the genus one partition function.

Let us parameterize the genus one free energy as

F1

(

t , t̂ ; p
)

=
(

1 − e−2 t̂
)2

∞
∑

n=1

e−n t Tn

(

t̂ ; p
)

. (B.1)
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Then the first five coefficients are given by

T1 = − 1

12
,

T2 = − e−4 t̂

48

[

2 + 6 p − p2 − 4 p3 − p4 + 2 e 2 t̂
(

2 − 5 p2 + p4
)

+ e 4 t̂
(

2 − 6 p − p2 + 4 p3 − p4
)

]

,

T3 = − e−8 t̂

72

[

2 + 14 p + 19 p2 − 20 p3 − 45 p4 − 24 p5 − 4 p6

+ 6 e 4 t̂
(

1 − 9 p2 + 13 p4 − 4 p6
)

+ e 8 t̂
(

2 − 14 p + 19 p2 + 20 p3 − 45 p4 + 24 p5 − 4 p6
)

+ 2 e 6 t̂
(

2 − 7 p − 14 p2 + 34 p3 + 3 p4 − 24 p5 + 8 p6
)

+ 2 e 2 t̂
(

2 + 7 p − 14 p2 − 34 p3 + 3 p4 + 24 p5 + 8 p6
)

]

,

T4 = − e−12 t̂

288

[

6 + 70 p + 227 p2 + 80 p3 − 744 p4 − 1332 p5 − 950 p6 − 312 p7 − 39 p8

+ e 12 t̂
(

6 − 70 p + 227 p2 − 80 p3 − 744 p4 + 1332 p5 − 950 p6 + 312 p7 − 39 p8
)

+ 2 e 10 t̂
(

6 − 44 p − 12 p2 + 452 p3 − 543 p4 − 438 p5 + 1080 p6 − 624 p7 + 117 p8
)

+ 2 e 2 t̂
(

6 + 44 p − 12 p2 − 452 p3 − 543 p4 + 438 p5 + 1080 p6 + 624 p7 + 117 p8
)

+ 4 e 6 t̂
(

6 − 118 p2 + 471 p4 − 560 p6 + 195 p8
)

+ e 8 t̂
(

18 − 70 p − 327 p2 + 832 p3 + 888 p4 − 2244 p5 − 90 p6 + 1560 p7 − 585 p8
)

+ e 4 t̂
(

18 + 70 p − 327 p2 − 832 p3 + 888 p4 + 2244 p5 − 90 p6 − 1560 p7 − 585 p8
)

]

,

T5 = − e−16 t̂

1440

[

24 + 404 p + 2182 p2 + 3660 p3 + 5865 p4 − 31604 p5 − 50870 p6

− 42200 p7 − 19435 p8 − 4720 p9 − 472 p10 + e 10 t̂
(

96 − 404 p − 3242 p2 + 8620 p3

+21470 p4 − 50176 p5 − 36880 p6 + 101800 p7 − 1540 p8 − 66080 p9 + 26432 p10
)

+ e 16 t̂
(

24 − 404 p + 2182 p2 − 3660 p3 − 5865 p4 + 31604 p5 − 50870 p6 + 42200 p7

− 19435 p8 + 4720 p9 − 472 p10
)

+ 2 e 14 t̂
(

24 − 278 p + 397 p2 + 3990 p3 − 13475 p4

+ 5208 p5 + 32360 p6 − 57340 p7 + 41410 p8 − 14160 p9 + 1888 p10
)

+ 2 e 2 t̂
(

24

+ 278 p + 397 p2 − 3990 p3 − 13475 p4 − 5208 p5 + 32360 p6 + 57340 p7 + 41410 p8

+ 14160 p9 + 1888 p10
)

+ 10 e 8 t̂
(

12 − 418 p2 + 3257 p4 − 8810 p6 + 9275 p8

− 3304 p10
)

+ 4 e 12 t̂
(

18 − 139 p − 311 p2 + 3010 p3 − 1235 p4 − 13436 p5

+ 16770 p6 + 9180 p7 − 27055 p8 + 16520 p9 − 3304 p10
)

+ 4 e 4 t̂
(

18 + 139 p

− 311 p2 − 3010 p3 − 1235 p4 + 13436 p5 + 16770 p6 − 9180 p7 − 27055 p8

− 16520 p9 − 3304 p10
)

+ 2 e 6 t̂
(

48 + 202 p − 1621 p2 − 4310 p3 + 10735 p4

+ 25088 p5 − 18440 p6 − 50900 p7 − 770 p8 + 33040 p9 + 13216 p10
)

]

. (B.2)
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For the analysis of section 4.2 we require only the leading order expansion in p given

by

F∞
1

(

t , t̂ ; p
)

=
1

48

(

1 − e−2 t̂
)4

e−2 t p4 +
1

18

(

1 − e−2 t̂
)6

e−3 t p6

+
13

96

(

1 − e−2 t̂
)8

e−4 t p8 +
59

180

(

1 − e−2 t̂
)10

e−5 t p10 + · · ·

=

∞
∑

n=1

R(n)

(2n)!

(

1 − e−2 t̂
)2n

e−n t p2n . (B.3)

The coefficients R(n) corresponding to the different winding numbers are recognized to be

R(n) =
(2n)!

24n!

(

nn − nn−1 −
n

∑

k=2

(k − 2)!

(

n

k

)

nn−k

)

. (B.4)

They count the number of branched coverings of the sphere by a torus with simple ramifi-

cation corresponding to the trivial partition (1n).

The asymptotic behaviour of R(n) for large n can be determined by means of the

integral representation

H(n) :=
R(n)

(2n)!
=

1

24n!

(

nn − nn−1 −
∫ ∞

0
dt

n
∑

k=2

tk−2 e−t

(

n

k

)

nn−k

)

=
1

24n!

(

nn − nn−1 − nn

∫ ∞

0

dt

t2
e−t

[

−1 − t +

(

n + t

n

)n])

=
1

24n!

(

nn − nn−1 −
∫ ∞

0
dt e−t

[

nn − (n + t)n−1
]

)

=
1

24n!

(∫ ∞

0
dt e−t (n + t)n−1 − nn−1

)

. (B.5)

This last integral can be computed explicitly, giving a closed form for these combinatorial

numbers in terms of the incomplete gamma-function as

H(n) =
1

24n!

(

e n Γ(n, n) − nn−1
)

=
1

24n!

(

e n Γ(n + 1, n)

n
− 2nn−1

)

. (B.6)

By using the asymptotic large n expansion

Γ(n + 1, n) = e−n nn

(

√

π

2
n1/2 +

2

3
+

√
2π

24
n−1/2 + · · ·

)

(B.7)

along with the Stirling approximation we obtain

lim
n→∞

H(n) =
nn−1/2

√

π
2

24n!

n→∞−→ nn−1/2
√

π
2

24nn+1/2
√

2π e−n
=

e n

48n
. (B.8)
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C. Gopakumar-Vafa invariants

In this appendix we list the genus zero Gopakumar-Vafa invariants n0
n(p) = n̂0

(0,n,0)(p) of

the threefold Xp for n = 1, . . . , 7, all of which are computed by the method described in

section 2.5:

n0
1(p) = (−1)p ,

n0
2(p) =

1

8

(

1 − (−1)p − 4 p + 2 p2
)

,

n0
3(p) = −(−1)p

(

1

3
p − 5

6
p2 +

2

3
p3 − 1

6
p4

)

,

n0
4(p) = −

(

1

6
p − 13

12
p2 +

7

3
p3 − 9

4
p4 + p5 − 1

6
p6

)

,

n0
5(p) = −(−1)p

(

1

6
p − 5

4
p2 +

9

2
p3 − 69

8
p4 +

55

6
p5 − 65

12
p6 +

5

3
p7 − 5

24
p8

)

,

n0
6(p) = −

(

13

120
p − (−1)p

24
p − 313

240
p2 +

5 (−1)p

48
p2 +

83

12
p3 − (−1)p

12
p3 − 333

16
p4

+
(−1)p

48
p4 +

757

20
p5 − 1025

24
p6 + 30 p7 − 51

4
p8 + 3 p9 − 3

10
p10

)

,

n0
7(p) = −(−1)p

(

1

10
p − 241

180
p2 +

851

90
p3 − 7163

180
p4 +

38269

360
p5 − 134407

720
p6

+
19747

90
p7 − 24941

144
p8 +

6517

72
p9 − 2401

80
p10 +

343

60
p11 − 343

720
p12

)

. (C.1)

Note that for p = 0, 1, 2 one has n0
n(p) = 0 for n 6= 1, and by using eq. (2.58) one finds

that the corresponding Gromov-Witten invariants are given by N0
n(p) = (−1)p/n3. This

is the expected result for smoothly embedded contractible rational curves [51]. For p ≥ 3

the structure changes. For example, at p = 3 one finds n0
7(3) 6= 0.

D. Chiral integrals

The saddle-point solution of the chiral q-deformed gauge theory in the large N limit requires

the elementary indefinite integral
∫

dw

w − s

1
√

(w − e c′)(w − e b′)
(D.1)

= − 1
√

(s − e c′)(s − e b′)
log







(

√

(w − e b′)(s − e c′) +
√

(s − e b′)(w − e c′)
)2

(s − w)
√

(s − e b′)(s − e c′)







in the complex plane. The cuts in both s and w are taken as indicated in figure 6. Then

one has
∫ −ε

−∞

dw

w(w − s)

1
√

( e c′ − w)( e b′ − w)
(D.2)
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=
1

s

(

∫ −ε

−∞

dw

w − s

1
√

( e c′ − w)( e b′ − w)
−

∫ −ε

−∞

dw

w

1
√

(ec′ − w)(eb′ − w)

)

=
1

s
√

(s − e b′)(s − e c′)
log







(

e b′/2
√

s − e c′ + e c′/2
√

s − e b′
)2

s
(√

s − e c′ +
√

s − e b′
)2







+
e−(b′+c′ )/2

s

[

b′ + c′ − 2 log

(

e b′/2 + e c′/2

2

)

− log(ε)

]

.

The integral over the cut [ e c′ , e d′ ] is instead given by

∫ e d′

e c′

dw

w(w − s)

1
√

( e c′ − w)( e b′ − w)
(D.3)

=
1

s

(

∫ e d′

e c′

dw

w − s

1
√

( e c′ − w)( e b′ − w)
−

∫ e d′

e c′

dw

w

1
√

( e c′ − w)( e b′ − w)

)

= − 1

s
√

(s − e c′)(s − e b′)
log







(

√

( e d′ − e b′)(s − e c′)+
√

(s − e b′)( e d′ − e c′)
)2

(s − e d′) ( e c′ − e b′)







− e−(b′+c′ )/2

s
log







(

e c′/2
√

e d′ − e b′ + e b′/2
√

e d′ − e c′
)2

e d′ ( e c′ − e b′)






.
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